VISIT US AT: HTTP://WWW.PHYCITY.COM

XII-Physics Chapter# 19, Page# 13

19.16 PROBLEMS:

Problem # 19.1

When the chlorine atom of mass numbers 35 and charge number 17, is bombarded by Proton, the resulting disintegrates, emitting an α -particle. Write the equation representing the reaction.

$$_{17}\text{Cl}^{35} + _{1}\text{H}^{1} \longrightarrow _{16}\text{S}^{32} + _{2}\text{He}^{4}$$
(alpha particle)

Problem # 19.2

The half life of Radon is 3.80 days. What would be its decay constant?

Data:
 Solution:

$$T_{\frac{1}{2}} = 3.80 \, days$$
 $T_{\frac{1}{2}} = \frac{0.693}{\lambda}$
 $T_{\frac{1}{2}} = 328320 \, sec$
 $\lambda = \frac{0.693}{T_{\frac{1}{2}}}$
 $\lambda = ?$
 $\lambda = \frac{0.693}{328320}$
 $\lambda = 2.1 \times 10^{-6} \, S^{-1}$

Problem # 19.3

The atomic weight of Bromine is 79.938u and it is composed of two isotopes of mass 78.943u and 80.942 u compute the percentage of each isotopes.

Solution:

Let the part of the 1^{st} isotope be X and that of 2^{nd} isotope be (1-X).

$$78.943 \text{ X} + (1-\text{ X}) 80.942 = 79.938$$
 $78.943 \text{ X} + 80.942 - 80.942 \text{ X} = 79.938$
 $+ 1.999 \text{ X} = + 1.004$
 $X = \frac{1.004}{1.999}$
 $X = 0.502$

Percentage of 1st isotope = 0.502 x 100
 $= 50.2\%$

Percentage of 2nd isotope = 100 - 50.2
 $= 49.8\%$

VISIT US AT: HTTP://WWW.PHYCITY.COM

XII-Physics Chapter# 19, Page# 14

Problem # 19.4

The half of 104Po210 is 140 days. By what percent does its activity will decrease per week?

Data:

$$T_{\frac{1}{2}} = 140 \text{ days}$$
$$t = 1 \text{ week}$$

Percentage decrease in activity per week =?

Solution:

$$T_{\frac{1}{2}} = \frac{140}{7} = 20$$
 week

let the initial activity be A.

$$A = \lambda N_0$$

And activity after one week be A'

$$A' = \lambda N$$

Describe is activity per week = A-A'

$$= \lambda N - \lambda N$$

= $\lambda (N_0 - N)$ (

$$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

$$\lambda = \frac{0.693}{T_{\frac{1}{2}}}$$

$$\lambda = \frac{0.693}{20}$$

 $\lambda = 0.03465 \text{ week}^{-1}$

From the law of radio activity decay

$$N = N_0 e^{-\lambda t}$$

$$N = N_0 e^{-0.03465 \times 1}$$

 $N = N_0 e^{-0.03465 \times 1}$

$$N = 0.966 N_0$$

eq. (1) = Decrease in activity per week =
$$\lambda (N_0 - 0.966 N_0)$$

= $\lambda N_0 (1 - 0.966)$

$$= 0.034 \lambda N_0$$

Percentage decrease in activity per week =
$$\frac{0.034\lambda N_0}{A}$$
 x

$$= \frac{0.034\lambda N_0}{\lambda N_0} \times 100$$
$$= 3.4 \%$$

VISIT US AT: HTTP://WWW.PHYCITY.COM

XII-Physics Chapter# 19, Page# 15

Problem # 19.5

If a neutron would be entirely converted into energy, how much energy would be produced? Express your answer in joules as well as electron volts.

Data:

$$\begin{array}{ll} m_N &= 1.008665 u \\ E \ in \ eV = ? \\ E \ in \ J &= ? \end{array}$$

Solution:

$$E = m_N \times 931.5$$

$$E = 1.008665 \times 931.5$$

$$E = 939.6 \text{ MeV}$$

$$E = 939.6 \times 10^6 \text{ eV}$$

$$E \text{ in } J = E \text{ in eV} \times 1.6 \times 10^{-19}$$

$$E \text{ in } J = 939.6 \times 1.6 \times 10^{-19}$$

$$E = 1.50 \times 10^{-16} \text{ J}$$

Problem # 19.6

Find the binding energy of
$$_{52}$$
Tc¹²⁶. Given

 $m_P = 1.0078u$
 $m_N = 1.0086u$
 $m_{Te} = 125.9033u$
 $1u = 931.5 \text{ MeV}$

Solution:

Mass of Tl in free stable

$$M = 52m_P + 74 m_N$$

 $M = 52 \times 1.0078 + 74 \times 1.0086$
 $M = 52.4056 + 74.6364$
 $M = 127.042u$
Mass Defect
 $\Delta m = M - m_{Tl}$
 $\Delta m = 127.042 - 125.9033$
 $\Delta m = 1.1387u$
 $E = \Delta m \times 931.5$
 $E = 1.1387 \times 931.5$

E = 1060.7 MeV

VISIT US AT: HTTP://WWW.PHYCITY.COM

XII-Physics Chapter# 19, Page# 16

Problem # 19.7

If the number of atom per gramme of $_{88}$ Ra 226 is 2.666×10^{21} and it decays with a half life of 1622 years. Find the decays constant and the activity of the sample. (2013)

Data:

$$N_0 = 2.666 \times 10^{21}$$
 $T_{\frac{1}{2}} = 1622 \text{ years} = 5.11 \times 10^{10} \text{ sec}$
 $\lambda = ?$
 $\Delta = 2$

Solution:

$$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$$

$$\lambda = \frac{0.693}{T_{\frac{1}{2}}}$$

$$\lambda = \frac{0.693}{5.11 \times 10^{16}}$$

$$\lambda = 1.35 \times 10^{11} \text{ S}^{-1}$$

$$A = \lambda N^0$$

$$A = 1.35 \times 10^{-11} \times 2.666 \times 10^{21}$$

$$A = 3.61 \times 10^{10}$$
 disintegration/sec

Problem # 19.8

What will be the maximum energy electron in the beta decay of 1H3 through the reaction.

mass of
$$_{1}H^{3} = 3.016049u$$

mass of $_{2}H^{3}e = 3.016029u$
 $E = 2$

Solution:

Mass defect

$$\Delta m = \text{mass of }_1 \text{H}^3 - \text{mass of }_2 \text{H}^3$$

$$\Delta m = 3.016049 - 3.016029$$

$$\Delta m = 2.41 \times 10^{-4} \text{ u}$$

$$E = \Delta m \times 931.5$$

$$E = 2 \times 10^{-5} \times 931.5$$

$$E = 0.0186 \text{ MeV}$$

VISIT US AT: HTTP://WWW.PHYCITY.COM

XII-Physics Chapter# 19, Page# 17

Problem # 19.9

Find the Q-value for nuclear reaction. 20Ca42 (P,d) 20Ca41

Data:

Mass of $_{20}$ Ca⁴² = 41.928u Mass of $_{20}$ Ca⁴¹ = 41.9118u Mass of Proton = 1.0078uMass of electron = 2.014102uO-Value = ?

Solution:

Mass defect

$$\Delta m = m_2 + m_1$$

$$\Delta m = 43.926 - 42.9358$$

$$\Delta m = 0.9902u$$

O-value = $\Delta m \times 931.5$

Q-value = 0.9902×931.5

O-value = 924 MeV

Problem # 19.10

Find the energy released when two deuterium (1H2) nuclei fuse together to form an alpha particle (2He4).

Data:

mass of deuterium = 2.014102u mass of alpha particle = 4.0026034

Solution

$$_{1}H^{2} + _{1}H^{2} \xrightarrow{\qquad \qquad } _{2}He^{4}$$

Mass of reactant, $m_{1} = 2.014102 + 2.014102$
 $m_{1} = 4.0282u$

Mass Defect

 $\Delta m = mass of two deuterium - mass of alpha particle$

$$\Delta m = 4.0282 - 4.002603$$

$$\Delta m = 0.0256u$$

$$E = \Delta m \times 931.5$$

$$E = 0.0256 \times 931.5$$

$$E = 23.82 \text{ MeV}$$

VISIT US AT: HTTP://WWW.PHYCITY.COM

XII-Physics Chapter# 19, Page# 18

19.17 SOLVED NUMERICALS OF PAPERS:

YEAR 2013:

(Question# 19.7 of Book)

YEAR 2012:

Q.2(xii) Find the binding energy and binding fraction (Packing fraction) in meV

 $m_p = 1.0078U$,

 $m_n = 1.00866U$,

 $m_{Te} = 125.9033U$

Similar to Q# 19.6

Ans. $B.E = 1.06 \times 103 \text{ MeV}$

B.F = 8.418 MeV/ Nucleon

YEAR 2010:

Q.2(xii)A deuteron (3.3431 x 10^{-27} kg) is formed when a proton (1.6724 x 10^{-27} kg) combine; calculate the mass defect and Binding Energy (in Mev) and a neutron (1.6748 x 10^{-27} kg)

Data:

Mass of deuteron = $A = 3.3431 \times 10^{-27} \text{ kg}$

Mass of Proton = $M_p = 1.6724 \times 10^{-27} \text{ kg}$

Mass of Neutron = $M_N = 1.6748 \times 10^{-27} \text{ kg}$

No. of Proton = Z = 1

No. of Neutrons = N = 1

Mass defect = $\Delta m = ?$ B.E = ?

Solution:

$$\Delta m = m - A = (Zm_P + NM_N) - A$$

$$\Delta m = (1 \times 1.6724 \times 10^{-27} + 1.6748 \times 10^{-27}) - A$$

$$\Delta m = (1.6724 \times 10^{-27} + 1.6748 \times 10^{-27}) - A$$

$$\Delta m = 3.3472 \times 10^{-27} - 3.3431 \times 10^{-27}$$

$$\Delta m = 0.0041 \times 10^{-27} \text{ kg}$$

$$\Delta m = 4.1 \times 10^{-30} \text{ kg}$$

Now

B.E =
$$\Delta mC^2 = (4.1 \times 10^{-30}) (3 \times 10^8)^2$$

$$B.E = 4.1 \times 10^{-30} \times 9 \times 10^{16}$$

$$B.E = 3.69 \times 10^{-13}$$
 Joule

But
$$1 \text{ ev} = 1.6 \times 10^{-19} \text{ Joule}$$

B.E =
$$\frac{3.69 \times 10^{-13}}{1.6 \times 10^{-19}}$$
 eV

$$B.E = 2.30625 \times 10^6 \text{ eV}$$

|Oı

B.E = 2.30625 MeV

VISIT US AT: HTTP://WWW.PHYCITY.COM

XII-Physics Chapter# 19, Page# 19

YEAR 2009:

Q.8(d)If the number of atoms per gram of 88Ra²²⁶ is 2.666 x 10²¹ and it decay with Half Life of 1622 years. Find the decay constant and the activity of the sample.

Solution:

SIMILAR TO QUESTION NO. 19.7

Answer:

a)
$$\lambda = 1.35 \times 10^{-11} \text{ sec}^{-1}$$

b) Activity =
$$A = 3.59 \times 10^{10} \text{ decay / sec}$$

YEAR 2006:

Q.8(d)The Half Life of 104Po²¹⁰ is 140 days. By what percent does its activity decrease per week?

Solution:

SIMILAR TO QUESTION NO. 19.4

Answer:

$$% \frac{\Delta A}{A} = 3.465\%$$

YEAR 2003:

If a neutron is converted entirely into energy, how much energy is produced? Express your answer is joule and in electron volt.

Given $m_N = 1.67 \times 10^{-27}$ Kg, $c = 3 \times 10^8$ m/s².

Data:

$$m_{\rm N} = 1.67 \times 10^{-27} \, \text{Kg}$$

$$c = 3x10^8 \text{ m/s}$$

Energy =
$$E = ?$$

Solution:

Energy in joules.

$$E = mc^2$$

 $E = (1.67 \times 10^{-27})(3 \times 10^{8})^{2}$

 $E = 1.503 \times 10^{-10} J$

Energy in eV

As $leV = 1.6x10^{-19}J$

$$E = \frac{1.503 \times 10^{10}}{1.6 \times 10^{-19}}$$

E = 939.375 MeV

VISIT US AT: HTTP://WWW.PHYCITY.COM

XII-Physics Chapter# 19, Page# 20

YEAR 2001:

Find the binding energy of $_{52}$ T_e^{126} in MeV if the mass of a portion is 1.0078u, mass of neutron = 1.0086u, mass of T_e atom = 125.9033u.

Data:

$$m_P = 1.0078u$$

$$m_N = 1.0086u$$

$$A = 125.9033u$$

B.E of
$$_{52}$$
Te¹²⁶ = ?

Solution:

No. of protons =
$$Z = 52$$

No. of neutrons =
$$126 - 52$$

$$N = 74$$

Mass of nucleus in free state

$$M = ZM_p + NM_N$$

$M = 52 \times 1.0078 + 74 \times 1.00876$

$$M = 127.042u$$
.

Mass defect

$$\Delta m = M - A$$

$$\Delta m = 127.042 - 125.9033$$

$$\Delta m = 1.1387u$$

As
$$1u = 931.5 \text{ MeV}$$

$$B.E = \Delta m \times 931.5$$

$$B.E = 1.1387 \times 931.5$$

B.E = 1060.7 MeV

YEAR 1985:

The half life of radon is 3.80 days. What is the decay constant for radon?

Data:

$$T_{\frac{1}{2}} = 3.80$$
 Days

$$\lambda = ?$$

Solution:

$$T_{\frac{1}{2}} = 3.80 \text{ x } 24 \text{ x } 3600$$

$$T_{\frac{1}{2}} = 328320 \text{ sec.}$$

$$T_{1} = \frac{0.692}{\lambda}$$

$$OR \ \lambda = \frac{0.693}{T_{\frac{1}{2}}}$$

$$\lambda = \frac{0.693}{32830}$$

$$\lambda = 2.11 \times 10^{-6} \text{ S}^{-1}$$