PRACTICAL CENTRE (KARACHI)

VISIT US AT: HTTP://WWW.PHYCITY.COM

XII-Physics, Chapter# 16, Page# 15

16.16 SOLVED NUMERICALS OF BOOK:

Problem# 16.2

A radar sends out 0.05us pulses of microwaves whose wave length is 2.5cm. what is the frequency of these microwaves? How many waves does each pulse contain?

GIVEN THAT:

Duration between pulses

$$t = 0.05/us = 5 \times 10^{-8} \text{ Sec}$$

$$\lambda = 2.5 \text{cm} = 2.5 \times 10^{-2} \text{ m}$$

REQUIRED:

- a) v = ?
- b) Number wave = n = ?

SOLUTION:

FOR FREQUENCY

As we know that

$$c = \upsilon \lambda$$

$$v = \frac{c}{\lambda} = \frac{3 \times 10^8}{2.5 \times 10^{-3}}$$

$$v = 1.2 \times 10^{10} \text{ Hz}$$
 (1)

FOR NUMBER OF WAVES

Firs of all calculate time period

$$T = \frac{1}{\nu} = \frac{1}{1.2 \times 10^{10}}$$

$$T = 8.333 \times 10^{-11} \text{ Sec}$$

The ratio between pulse duration and time period is this no of waves does each pulse contain.

$$n = \frac{t}{T}$$

$$n = \frac{5 \times 10^{-8}}{8.333 \times 10^{-11}}$$

n = 600 waves

PRACTICAL CENTRE (KARACHI)

VISIT US AT: HTTP://WWW.PHYCITY.COM

XII-Physics, Chapter# 16, Page# 16

Problem# 16.3

A nanosecond is 10^{-9} sec (a) What is the frequency of electromagnetic wave whose period is 1ns? (b) What is it's wave length? (c) To what class of electromagnetic waves does it belong?

GIVEN THAT:

$$T = 1n sec = 10^{-9} sec$$

 $v = c = 8 \times 10^{8} sec$

REQUIRED:

- (a) $\upsilon = ?$
- (b)
- Hite: Ilminin bhycity.cc Type if electromagnetic wave =? (c)

SOLUTION:

FOR FREQUENCY (a)

As we know that

$$vT = 1$$

$$\upsilon = \frac{1}{T}$$

$$v = \frac{1}{10^{-9}}$$

$$v = 10^9 \text{ Hz}$$

FOR WAVE LENGTH **(b)**

$$\upsilon \lambda = c$$

$$\lambda = \frac{c}{c}$$

$$\lambda = \frac{3 \times 10^8}{10^9}$$

$$\lambda = 3 \times 10^{-1}$$

$$\lambda = 0.3 \text{m}$$

PRACTICAL CENTRE (KARACHI)

VISIT US AT: HTTP://WWW.PHYCITY.COM

XII-Physics, Chapter# 16, Page# 17

16.17 SOLVED NUMERICALS OF PAPERS:

YEAR 2007:

Q.6(d) Calculate the speed of electromagnetic waves, given that

.
$$\in_o$$
 = 8.85 x 10^{-12} $C^2/N\text{-}m^2$ and μ_o = 4π x 10^{-7} Tm/A

GIVEN THAT:

Permittivity of air/free spare = ϵ_0 = 8.85 x 10^{-12} C²/N-m²

Permeability of air/free spare = $\mu_0 = 4\pi \times 10^{-7} \text{ Tm/A}$

REQUIRED:

Velocity of electromagnetic wave = v = c = ?

As we know that

Velocity =
$$\frac{1}{\sqrt{\mu_0 \in \Omega}}$$

OR

$$C = \frac{1}{\sqrt{4\pi \times 10^{-7} \times 8.85 \times 10^{-12}}}$$

$$C = \frac{1}{\sqrt{4 \times 3.1416 \times 8.85 \times 10^{3}}}$$

$$C = \frac{1}{\sqrt{1.11213 \times 10^{-17}}}$$

$$C = \frac{1}{3.33486 \times 10^{-3}}$$

$$C = 2.9986 \times 10^8 \text{ m/sec}$$

OR

$$C = 3 \times 10^8 \text{ m/sec}$$