VISIT US AT: HTTP://WWW.PHYCITY.COM and the same # XII-Physics, Chapter# 16, Page# 18 16.18 MULTIPLE CHOICE QUESTIONS OF PAPERS: | Elec | tromagnetic V | Vaves: | | | | | |-------------|---|---------------------------------------|----------------------|---------------------------|--|--| | Q.1 | Electromagnetic ' | Waves consists of: | • | | | | | | * Magnetic field | | * Electric field | | | | | | * Electric and ma | gnetic field moving | perpendicular to e | ach other | | | | • | * Electric and magnetic field moving perpendicular to each other * Electric and magnetic field moving parallel to each other | | | | | | | Q.2. | | magnetic wave in t | | by: (2013, 2007) | | | | | * $\sqrt{\mu_o \in_o}$ | * $\frac{1}{\sqrt{\mu_o \in_o}}$ | * μ₀∈ ₀ | * $\frac{1}{\mu_0 \in 0}$ | | | | Q.3 | The electromagne | etic waves travel is f | free space with the | | | | | | * Equal to the spe | | * Equal to the spe | • | | | | | * Less than the sp | eed of light | * Greater than the | | | | | Q.4 | Electromagnetic v | waves are: | | | | | | | * Longitudinal | * Transverse | * Stationary | * Complex | | | | Q.5 | Which of the follo | owing are electroma | ignetic waves? | | | | | | * Sound waves | * Water waves | _ | * Complex waves | | | | Q.6 | The direction of p | ropagation of an ele | | - | | | | | * Perpendicular to | | * Perpendicular to | | | | | | * Parallel to electr | | * Perpendicular to | | | | | Q .7 | Electromagnetic v | vaves have frequenc | | | | | | | * 10 ⁴ Hz | * 10 ⁵ Hz | * 10 ⁶ Hz | * 10 ¹² Hz | | | | Q.8. | The device which | | | netic wave is called: | | | | | * Decorder | * Diode | * Antenna | * Semi conductor | | | | Q.9 | The waves from the | ne antenna are: | | | | | | | * Expanding plane | wave fronts | * Concentric sphe | res | | | | | * Expanding wave | es | * None of these | | | | | Mod | lulation; | · · · · · · · · · · · · · · · · · · · | | | | | | Q.10 | The process of ge is called: | enerating the effect | of Audio Signal i | n Electromagnetic wav | | | | | * Modulation | * Amplification | * Biasing | * Rectification | | | | Q.11. | Choose the right of | | | • | | | | | | | * Amplitude mod | ulation | | | | | * Amplitude mag | nification | * Amplitude meas | | | | | Q.12. | The process in which original signal is recovered from modulated signal is called: | | | | | | | | * Doping | * Biasing | * Rectification | * Demodulation | | | | Q.13. | In frequency mod does not change: | _ | | g of the original signa | | | | | * Pitch | * Wavelength | * Frequency | * Amplitude | | | ## VISIT US AT: HTTP://WWW.PHYCITY.COM XII-Physics, Chapter# 16, Page# 19 * Neutrons | Ban | d Theory of Solid: | | | | | | | |------|--|--|--|--|--|--|--| | Q.14 | The electrons in the outermost shell of an atom are called: | | | | | | | | | * Tightly bound electron | | | | | | | | | * Free electrons * Loosely bound electrons | | | | | | | | Q.15 | A vacant or partially filled band is called: | | | | | | | | • | * Fermi bond | | | | | | | | 0.16 | The band above the valence band is called: | | | | | | | | • | * Conduction band * Forbidden band * Covalent band * Occupied band | | | | | | | | 0.17 | The which have partially field conduction bands are called: | | | | | | | | | * Insulators | | | | | | | | Q.18 | The energy band occupying valence electrons is known as: | | | | | | | | _ | * Valence band * Conduction band* Convection band* Radiation band | | | | | | | | Q.19 | In a semiconductor: | | | | | | | | | * The electrons move in the conduction band while the holes move in the | | | | | | | | | forbidden band. | | | | | | | | | * The holes move in the conduction band and the electrons move in the forbidden | | | | | | | | ٠. | band. | | | | | | | | | * The electrons move in the conduction band and the holes move in the valence | | | | | | | | | band. | | | | | | | | | * The holes move in the conduction band and the electrons move in the valence band only. | | | | | | | | 0.20 | A substance which has empty conduction band is called: | | | | | | | | Q.20 | * Semiconductor * Conductor * Insulator * Transistor | | | | | | | | Sam | ii-Conductors: | | | | | | | | | | | | | | | | | Q.21 | The substances with conductivities of order $10^{-6} \Omega \text{ m}^{-1}$ to $10^{-4} \Omega \text{ m}^{-1}$ are: * Semiconductor * Conductor * Good conductor * Insulator | | | | | | | | 0.33 | | | | | | | | | Q.22 | Solids with intermediate conductivity of the order 10^{-6} to $10^{-4} \Omega$ m ⁻¹ is called: | | | | | | | | 0.44 | * Conductor * Semiconductor * Insulator * Good conductor | | | | | | | | Q.23 | Which one of the following is not a semiconductor: | | | | | | | | 0.24 | * Copper * Silicon * Germanium * Gallium arsenide The process of adding a small amount of impurity into the process of adding a small amount of the process of adding a small amount of impurity into the process of adding a small amount of a small amount of the process of adding a small amount | | | | | | | | Q.24 | The process of adding a small amount of impurity into the pure semiconductors is called: | | | | | | | | | * Mixing * Dropping * Doping * Inserting | | | | | | | | Q.25 | | | | | | | | | | * Extrinsic semiconductor * Intrinsic semiconductor | | | | | | | | | * P-type semiconductor | | | | | | | | Q.26 | The semi-conductor is its extremely pure form is called: | | | | | | | | | * Extrinsic semiconductor * Intrinsic semiconductor | | | | | | | | | * N-type semiconductor | | | | | | | | Q.27 | To make N-type substance, Antimony is mixed with: | | | | | | | | 5 | *Boron *Silicon *Germanium *Indium | | | | | | | | Q.28 | To make P-type substance, Indium is mixed with: | | | | | | | | | * Boron * Silicon * Germanium * Antimony | | | | | | | | Q.29 | In the P type substance, charged carries are: | | | | | | | * Positive * Negative * Ions ## VISIT US AT: HTTP://WWW.PHYCITY.COM XII-Physics, Chapter# 16, Page# 20 Q.30 In the N type substance charged carries are: * Positive * Negative * Ions Neutrons Q.31 Majority carries in an N type substance are: * Positrons * Electron * Protons Q:32 Minority carries in N type substance are: * Protons * Positrons * Electron * Hole Q.33 Majority carries in a P type substance are: * Protons * Hole * Electrons * Positr Q.34 Minority carries in a P type substance are: * Positrons *Protons * Electron * Neutrons * Hole • Q.35 Donor impurities are: * G_e and S_i * I_n and G_a * S_b and A_s * L_i and G_a Q.36 The Process of adding impurity of Trivalent or Pentavalent into Semi Conductor is called: * Modulation * Rectification * Doping * Biasing Q.37 The Semi Conductor mixed with impurity of Trivalent or Pentavalent is * None of these * Extrinsic Semi Conductor * Electronic device * Intrinsic Semi Conductor The dev 218 Q.38 PN-Junction Diode works as an insulator if connected: * to A.C source * in forward bias * in reverse bias * all of these Q.39 The potential difference applied across P-N junctions which results in the reduction of the barrier potential is: * Reverse basing * Forward blasing * Charging * Induction Q.40 A Semi-conductor Diode is used as: *An amplifier *An oscillator *A rectifier * Holes Q.41 A PN-junction can be used as: * Rectifier * Amplifier * Transformer * Ohm-meter Q.42 The two terminal Semi Conductor device used as a rectifier is called: * Diode * Transistor * Triode * P-type device Q.43 The Process of converting A.C into D.C is called: * Modulation * Amplification * Biasing * Rectification Q.44 Whenever a Potential is applied across the P-n junction diode so as to increase the height of the Potential barrier, the diode is said to be: * Both reverse and forward biased * Reverse biased * Forward biased Q.45. Whenever a Potential is applied across the P-n junction diode so as to E. 2 decrease the height of the Potential barrier, the diode is said to be: * Both reverse and forward biased * Choked * Forward biased * Reverse biased Q.46 The diode which gives off visible light when energized is called: (2013) * Photo diode * L.C.D. * Photovoltaic diode * L.E.D. 12 S. Mar " " 12 1 ## VISIT US &T: HTTP://WWW.PHYCITY.COM XII-Physics, Chapter# 16, Page# 21 # Transistor: Q.47 A transistor in a circuit basically used as: * An amplifier * An oscillator * Full wave rectifier * A half wave rectifier **O.48** The three portions of transistor form: * Three junction * Four junction * Six junction * Two junction Q.49 In case of a transistor, the central portion has to be: * N-type or P-type * None of these * N-type * P-type Q.50 The term transistor stands for: Transfer of voltage * Transfer of resistance * Transfer of power * Transfer of current O.51 The symbol of NPN transistor is: Q.52 The symbol of NPN transistor is: Q.53 In the transistor be Rematic symbol, the arrow: * Is located on the emitter * Is located on the base * Points form north to south * Is located on the collector Q.54 Emitter Base junction is forward biased in: * NPN transistor * PNP transistor * Both PNP and NPN transistor * Rectifier Q.55 The three terminal device, used as an amplifier and brought revolution in Electronics is called. * Diode * Triode * Transistor Q.56 The device which rises the strength of a weak signal at the output is: * Amplifier * Decorder * Recorder * Diode Q.57. Base - Emitter junction and Base-Collector junction of transistor are: * Forward biased and reverse biased * Reverse biased and forward biased * Both forward biased * Both reverse biased Q.58 The semi-conductor device which increases the strength of weak input signal at the output is a: * N-type semi conductor * P-n diode * Transistor * P-type semi conductor Q.59 Which quantity of audio signal is changed by transistor: * Amplitude * All of these * Frequency * Wave length # VISIT US AT: HTTP://WWW.PHYCITY.COM XII-Physics, Chapter# 16, Page# 22 ## KEY | (1) Electric and magnetic field moving perpendicular to each other | (21) Semiconductor | (41) Rectifier | | | |---|--|--|--|--| | $(2) \frac{1}{\sqrt{\mu_o \in_o}}$ | (22) Semiconductor | (42) Diode | | | | (3) Equal to the speed of light | (23) Copper | (43) Rectification | | | | (4) Transverse | (24) Doping | (44) Reverse biased | | | | (5) Radio waves | (25) Extrinsic semiconductor | (45) Forward biased | | | | (6) Perpendicular to both fields | (26) Intrinsic semiconductor | (46) LED | | | | (7) 10 ⁶ Hz | (27) Germanium | (47) An amplifier | | | | (8) Antenna | (28) Germanium | (48) Two junction | | | | (9) Expanding waves | (29) Positive | (49) N-type or P-type | | | | (10) Modulation | (30) Negative | (50) Transfer of resistance | | | | (11) Amplitude Modulation | (31) Electron | (51) E C | | | | (12) Demodulation | (32) Hole | (52) E C | | | | (13) Frequency | (33) Hole | (53) | | | | (14) Valance electron | (34) Electron | (54) Both PNP and NPN transistor | | | | (15) Conduction band | (35) S _b and A _s | (55) Transistor | | | | (16) Conduction band | (36) Doping | (56) Amplifier | | | | (17) Conductors | (37) Extrinsic semiconductor | (57) Forward biased and reverse biased | | | | (18) Valence band | (38) in reverse bais | (58) Transistor | | | | (19) The electrons move in the conduction band and the holes move in the valence band | (39) Forward biasing | (59) Amplitude | | | | (20) Insulator | (40) A rectifier | | | | | | | | | |