	XII-Physics Chapter# 11 Page# 41
11.49: SOLVED MCQs OF PAPERS:	
YEAR (2012):	
(i) The maximum work done is possible in this process:	
* Isoboric * Isochoric * Isotherma	Adiabatic
(II) Absolute zero corresponds to this temperature on Fahre	nheit scale:
* 32°F * -180°F * -460°F	* 212°F
YEAR (2011):	
(i) Kinetic Energy Per mole of an ideal gas is:	
* $\frac{3}{2}$ KT * $\frac{2}{3}$ KT * $\frac{3}{2}$ RT	$*\frac{3}{2}$ RT
2 3 <u>2</u>	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
(ii) In Adiabatic expansion, The internal energy of the g * Remains the same * Decreases * Increases	
* Remains the same * <i>Decreases</i> * Increases YEAR (2010):	* Becomes zero
Q.1(a)Choose the most appropriate answer for each from g (i) Two steam engines A and B have their sources	iven options.
(i) Two steam engines A and B have their sources sinks at 300°C and 200°C respectively:	at 600°C and 400°C and their
* B is more efficient than A	e efficient than 'B'
* If their sinks are interchanged their efficiencies will not	of change
(II) On Fahrenheit scale the temperature of 50°C will be	:
* 40°F * 10°F * 122°F	V * 105°F
YEAR (2009):	
Q.1(a)Choose the correct answer from given options:	
(i) Heat energy cannot be measured in: * J * B.T	.U * Kelvin * Calorie
(ii) Boyle's Law holds good for in ideal gas in process c * Isobaric * Isochoric * Isotherma	alled:
	d * Adiabatic
(iii) According to the Second Law of Thermodynamics energy into work is:	100 per cent conversion of heat
* Possible * Not possib	le
* Possible when conditions are ideal * Possible will	hen conditions are not ideal
Q.2(a) Choose the correct answer irom given options	
(i) If no heat flows into or out of a system, the process * Isobaric * Isothermal * Isocheria	
	* Adiabatic
(ii) The molar heat capacities of polyatomic gasses a gasses are: * Greater * Smaller	s compared to the monoatomic
(iii) Thermostat is a device used to keep the:	* Equal * Infinite
	t constant * Pressure constant
YEAR (2008):	r constant Pressure constant
Q.1(a)Choose the correct answer from given options.	
(1) The kinetic energy per mole of a gas is:	
* 3/2 kT $* 2/3 kT$ $* 3/2 RT$	* nRT
 (ii) If the volume of a given mass of a gas is doubled with the pressure of the gas is: 	ithout changing its temperature
+ D. J. J. V. A	
* Reduced to ½ of the initial value * The same as * Reduced to ¼ of the initial value * Double of the	the initial value
(iii) A bimetallic thermostat works on the principle of:	e initial value
* Linear expansion * Bulk expansion * Differential li	
Duik Capansion * Differential 1	inear expansion * All of these
Q.2(a) Choose the correct answer from given ontions	
Q.2(a)Choose the correct answer from given options. (i) The area bounded by an isothermal and an adjubation	C curve in a DV
 Q.2(a) Choose the correct answer from given options. (i) The area bounded by an isothermal and an adiabatic heat-engine represents: 	c curve in a PV diagram for a
 Q.2(a) Choose the correct answer from given options. (i) The area bounded by an isothermal and an adiabatic heat-engine represents: * Heat absorbed * Heat rejected * Work down 	
 Q.2(a) Choose the correct answer from given options. (i) The area bounded by an isothermal and an adiabatic heat-engine represents: * Heat absorbed * Heat rejected * Work done (ii) Entropy has been called the degree of disorder because 	
 Q.2(a) Choose the correct answer from given options. (i) The area bounded by an isothermal and an adiabatic heat-engine represents: * Heat absorbed * Heat rejected * Work done ii) Entropy has been called the degree of disorder because: * The entropy of the universe remains constant 	
 Q.2(a) Choose the correct answer from given options. (i) The area bounded by an isothermal and an adiabatic heat-engine represents: * Heat absorbed * Heat rejected * Work done (ii) Entropy has been called the degree of disorder because 	* Total kinetic energy

			XII	-Physics Chapter# 11 Page#
iii)	A thermodynamic p	rocess in which the	change in volume of the	system is zero tells that:
	* The work done by	the system is maxi	mum	
	* The work done or	n and by the system	is zero	
	* The work done on	the system is maxi	imum * None of t	the above
YEA	R (2007):			•
Q.1(a)Choose the correct	answer from give	n options.	
i)	Fahrenheit and C	elsius scales of te	mperature coincide	at:
	* 0°	* 273°	* -273°	*40°
ii)	The volume of a g	iven gas at consta	ant pressure become	s zero at:
	* 273 K	*.273°C	* -273 K	* -273 °C
(iii)	According to the Ki	netic Theory of gas	es the absolute temper	ature of a perfect gas is:
	* Inversely proport	tional to the K.E o	f the molecules	
	* Independent of k			
	* Equal to the kine			
3 7/6	Choose the servest	nal to the average	translational kinetic e	energy of the molecules
2.2(2 i)	Choose the correct The bounded area	answer trom give	n options.	
••	* Energy loss due to) leakage * Heat rei	ected * Heat absorbed	* Usoful work
ii)				and -30°C. The heat will
	flow from:	D VI a lou ale at	temperatores -10 C	and -50 C. The heat will
		* Will not flow at	t all * -10 °C to -30 °C	* None of the above
(iii)	273 K is equal to:			
	* 0°F	* -32°F	* –273°F	* 32 °F
YEA	R (2006):			
	a)Choose the correct	answer from give	n options.	
i)			equal to: * 32° * 1	6F° * 0°F * 1 8<i>°F</i>
	The maximum work	done can be meas	ured in the process c	alled:
	* Isobaric	* Isochoric	* Isothermal	* Adiabatic
iii)	The change in diso		is equal to:	
		* $\Delta S = \frac{\Delta Q}{T}$		* $\Delta S = \Delta Q.T$
				$\Delta 5 = \Delta Q.1$
Q.2(8	a) Choose the correct	answer from give	n options.	
i)	One cubic metre ve			
	$* 10^2 \text{ cm}^3$	$* 10^3 \text{ cm}^3$	* 10 ⁶ cm ³	* 10^{-3} cm ³
ii)	In C.G.S. system of	ne calorie of heat i		
an	* 11.184 J	* 2.184 J	* 3.184 J	* 4.184 J
m)	The efficiency of a	Carnot engine is g	•	
	* $1 - \frac{T_1}{T_2}$	$* \frac{4}{\pi} - 1$	$*\frac{T_2}{T_1}-1$	* None of these
		I ₂	\mathbf{f}_1	-
I P.A	R (2005):			
)Choose the correct			
Q.1(a	- RMS velocity of a g	gas molecule at ab	solute zero temperati	
Q.1(a	*0 106 /	* 3×10^3 m/sec	* 273 m/sec	* Zero
Q.1(a i)	* 9 x 10° m/sec		270 110000	· · · · · · · · · · · · · · · · · · ·
Q.1(a i)	* 9 x 10° m/sec The value of Boltzr			+ +
Q.1(a i) ii)	* 9 x 10^{6} m/sec The value of Boltzr * 3.85 x 10^{-23}	* 2.185 x 10 ⁻¹² JK	$X^{-1} * 1.62 \times 10^{-22} \text{ JK}^{-1}$	
Q.1(a i) ii)	* 9 x 10° m/sec The value of Boltzr * 3.85 x 10 ⁻²³ The heat required	* $2.185 \ge 10^{-12}$ JK to produce a unit of	$X^{-1} * 1.62 \times 10^{-22} \text{ JK}^{-1}$	* <i>1.38 x 10⁻²³ JK⁻¹</i> ature of a unit mass of a
Q.1(a i) ii)	* 9 x 10° m/sec The value of Boltzr * 3.85 x 10 ⁻²³ The heat required substance is called:	* 2.185 x 10 ⁻¹² JK to produce a unit o	K ⁻¹ * 1.62 x 10 ⁻²² JK ⁻¹ change in the tempera	ature of a unit mass of a
Q.1(a i) ii) iii)	* 9 x 10° m/sec The value of Boltzr * 3.85 x 10 ⁻²³ The heat required substance is called: * Heat capacity	* 2.185 x 10 ⁻¹² JK to produce a unit of * Molar heat	X ⁻¹ * 1.62 x 10 ⁻²² JK ⁻¹ change in the tempera * Specific heat	
Q.1(a i) ii) iii) Q.2(a	* 9 x 10° m/sec The value of Boltzr * 3.85 x 10 ⁻²³ The heat required substance is called: * Heat capacity choose the correct	* 2.185 x 10 ⁻¹² JK to produce a unit of * Molar heat answer from giver	 x⁻¹ * 1.62 x 10⁻²² JK⁻¹ change in the temperative specific heat x Specific heat x options. 	ature of a unit mass of a * Latent heat
Q.1(a i) ii) [iii)	* 9 x 10° m/sec The value of Boltzr * 3.85 x 10 ⁻²³ The heat required substance is called: * Heat capacity choose the correct	* 2.185 x 10 ⁻¹² JK to produce a unit of * Molar heat answer from giver	 x⁻¹ * 1.62 x 10⁻²² JK⁻¹ change in the temperative specific heat x Specific heat x options. 	ature of a unit mass of a
Q.1(a i) ii) iii) Q.2(a	 * 9 x 10° m/sec The value of Boltzr * 3.85 x 10⁻²³ The heat required substance is called: * Heat capacity Choose the correct The difference of m 	* 2.185 x 10 ⁻¹² JK to produce a unit of * Molar heat answer from giver nolar specific heats	 x 1.62 x 10⁻²² JK⁻¹ change in the temperative structure <i>Specific heat</i> a options. a at constant pressure 	ature of a unit mass of a * Latent heat e and at constant volume
Q.1(a i) iii) iii) Q.2(a i)	* 9 x 10° m/sec The value of Boltzr * 3.85 x 10 ⁻²³ The heat required substance is called: * Heat capacity choose the correct The difference of m per mole is called: * Molar heat	* 2.185 x 10 ⁻¹² JK to produce a unit of * Molar heat answer from giver nolar specific heats * Heat constant	 x 1.62 x 10⁻²² JK⁻¹ change in the temperative specific heat x Specific heat a options. s at constant pressure * Boltzman consta 	ature of a unit mass of a * Latent heat e and at constant volume
Q.1(a i) ii) iii) Q.2(a i)	* 9 x 10° m/sec The value of Boltzr * 3.85 x 10 ⁻²³ The heat required substance is called: * Heat capacity a)Choose the correct The difference of m per mole is called: * Molar heat A domestic pressur * Adiabatic process	* 2.185 x 10 ⁻¹² JK to produce a unit of * Molar heat answer from giver nolar specific heats * Heat constant re cooker is based * Isothermal proc	 x 1.62 x 10⁻²² JK⁻¹ change in the temperative specific heat a options. a t constant pressure * Boltzman constation: ess * Isobaric process 	ature of a unit mass of a * Latent heat e and at constant volume nt * Gas constant
Q.1(a i) iii) [iii) Q.2(a	* 9 x 10° m/sec The value of Boltzr * 3.85 x 10 ⁻²³ The heat required substance is called: * Heat capacity choose the correct The difference of m per mole is called: * Molar heat A domestic pressur * Adiabatic process The absolute tempo	* 2.185 x 10 ⁻¹² JK to produce a unit of * Molar heat answer from giver nolar specific heats * Heat constant re cooker is based * Isothermal proc	 x 1.62 x 10⁻²² JK⁻¹ change in the temperative specific heat a options. a t constant pressure * Boltzman constation: ess * Isobaric process 	ature of a unit mass of a * Latent heat e and at constant volume nt * Gas constant
Q.1(a i) iii) iii) Q.2(a i)	* 9 x 10° m/sec The value of Boltzr * 3.85 x 10 ⁻²³ The heat required substance is called: * Heat capacity a)Choose the correct The difference of m per mole is called: * Molar heat A domestic pressur * Adiabatic process	* 2.185 x 10 ⁻¹² JK to produce a unit of * Molar heat answer from giver nolar specific heats * Heat constant re cooker is based * Isothermal proc	 x 1.62 x 10⁻²² JK⁻¹ change in the temperative specific heat a options. a t constant pressure * Boltzman constation: ess * Isobaric process 	ature of a unit mass of a * Latent heat e and at constant volume nt * Gas constant

Į

		XI	I-Physics Chapter# 11 Page# 43
11.	.50: MULTIPLE CHOICE O	QUESTIONS	
	(FOR SELF PRACTICE		
Q.1.	. According to the caloric theory hea	it is present in all	bodies in the form of.
	(a) Molecular Interactions		motions of molecules
	(c) Molecular Kinetic energy	(d) A weightless	
Q.2.	. Caloric is the:		
	(a) Hypothetical weightless fluid	(b) Imaginary co	oncept of energy
	(c) Energy	(d) Molecular m	
Q.3.	. The normal human body temperate		
	(a) 212 °F (b) 100 °F	(c) 98.4 °F	(d) 37 °F
Q.4.	. The temperature at which both Cel each other is:	sius and Fahrenh	
	(a) 100 (b) 273	(c) – 40	(d) Zero
Q.5.	Absolute zero is equivalent to:	i dan dan kurula kur Marina kurula kurula Marina kurula	
in de la composition de la composition Composition de la composition de la comp	(a) 100 °C (b) – 460 °F	(c) 0 °C	(d) 273 K
Q.6.	Kinetic energy of gas molecule is:	C	
	(a) RT. (b) $\frac{3}{2}$ RT	(c) KT	(d) $\frac{3}{2}$ KT
Q.7.	Kinetic energy per mole of ideal ga	s molecules is:	
			3
	(a) RT (b) $\frac{3}{2}$ RT	(c) KT	(d) $\frac{3}{2}$ KT
Q.8.	Upon which Physical quantity Kine	tic energy of gas	molecules depends
	(a) Number of moles of gas	(b) Temperature	
	(c) Pressure of gas.	(d) Volume of ga	as
Q.9.	Molecules of which gas, Oxygen of particular temperature.	or Nitrogen in ai	r will move fast at some
	(a) Molecules of both gases will move	e with same Veloc	ities
	(b) Oxygen		
	(c) Nitrogen		
	(d) None of these		
Q.10.	. The unit of Co-efficient of thormal	expansion is:	
	(a) mK (b) $\frac{m}{K}$	(c) K ⁻¹	(d) K
Q.11.	. Co-efficient of Volumetric expansio	n is the:	
· · ·	(a) Intrinsic Quantity		المراجع . مراجع المراجع . مراجع المراجع . المراجع .
	(b) Thrice of Co-efficient of Linear ex	pansion	
	(c) One third of Co-efficient of Linear	expansion	
	(d) Thermometric Property		
Q.12.	. Which physical quantity of sub expansion?	stance does no	t change with thermal
	(a) Volume (b) Length	(c) Mass	(d) Density

0.13 Which types of stains of a	XI	I-Physics Chapter# 11 Page# 44
Q.13. Which types of strips of metals ar	e used in Bimetalli	c strip.
(a) Different Co-efficient of therma(b) Different lengths	1 expansion	
(c) Different Sizes		
(d) Different Shapes		
Q.14. A thermostat is a device which is		
(a) to keep the heat flow constant	used:	
(b) to Isolate the system from surror	1. 1.	
(c) in all heating appliances	indings	
(d) to keep the temperature constant 0.15 The quantity of best mercius is		
Q.15. The quantity of heat required to c (a) Molar specific heat		
(c) Latent heat	(b) Heat capacity	an an an tha the state of the s
그는 그 같아요. 그는 것 같아요. 그는 그는 것 ? 그는 그는 것 ? 그는 그는 것 ? 그는 그는 것 ? 그는	(d) Specific heat	
Q.16. The quantity of heat required per d (a) Molar specific heat		
(c) Latent heat	(b) Heat capacity	
	(d) Specific heat	
Q.17. The quantity of heat required per a substance is:	degree rise the ter	nperature of unit mass of
(a) Molar specific heat	(b) Heat capacity	
(c) Latent heat		
	(a) Specific heat	
Q.18. The quantity of heat required to r	(d) Specific heat ise the temperature	e of 1Kg of water through
Q.18. The quantity of heat required to r 1K, in Joules is:	ise the temperature	
Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200	ise the temperature (c) 4.2	(d) 42
Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r	ise the temperature (c) 4.2 rise the temperature	(d) 42
Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200	ise the temperature (c) 4.2 rise the temperature	(d) 42 e of one mole of an ideal
Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r	ise the temperature (c) 4.2 tise the temperature K is: (c) 1J	(d) 42 Te of one mole of an ideal (d) C _P
 Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r gas at constant volume through 1K 	ise the temperature (c) 4.2 tise the temperature K is: (c) 1J	(d) 42 Te of one mole of an ideal (d) C _P
 Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r gas at constant volume through 1K (a) C_V (b) C 	ise the temperature (c) 4.2 tise the temperature K is: (c) 1J	(d) 42 Te of one mole of an ideal (d) C _P
 Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r gas at constant volume through 1K (a) C_V (b) C Q.21. PVy =	ise the temperature (c) 4.2 Fise the temperature K is: (c) 1J Fise the temperature is:	(d) 42 Te of one mole of an ideal (d) C _P Te of one mole of an ideal
Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r gas at constant volume through 1K (a) C_V (b) C Q.21. $PV_{7} = $ (a) KT (b) nRT	ise the temperature (c) 4.2 Fise the temperature K is: (c) 1J Fise the temperature is:	(d) 42 Te of one mole of an ideal (d) C _P Te of one mole of an ideal
Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r gas at constant volume through 1K (a) C_V (b) C Q.21. $PV_{Y} = $ (a) KT (b) nRT Q.22. The graph of Boyles law is a:	ise the temperature (c) 4.2 Fise the temperature K is: (c) 1J Fise the temperature is: (c) 1J	(d) 42 re of one mole of an ideal (d) C _P re of one mole of an ideal (d) C _P
 Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r gas at constant volume through 1K (a) C_V (b) C Q.21. PV_Y =	ise the temperature (c) 4.2 Fise the temperature K is: (c) 1J Fise the temperature is: (c) 1J	(d) 42 re of one mole of an ideal (d) C _P re of one mole of an ideal (d) C _P
Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r gas at constant volume through 1K (a) C_V (b) C Q.21. $PV_{Y} = $ (a) KT (b) nRT Q.22. The graph of Boyles law is a: (a) Curve (b) Slope Q.23. The graph of Charle's law is a:	ise the temperature (c) 4.2 Fise the temperature K is: (c) 1J Fise the temperature is: (c) 1J (c) Constant	 (d) 42 re of one mole of an ideal (d) C_P re of one mole of an ideal (d) C_P (d) C_P (d) RT
 Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r gas at constant volume through 1K (a) C_V (b) C Q.21. PV_Y =	ise the temperature (c) 4.2 fise the temperature K is: (c) 1J fise the temperature is: (c) 1J (c) Constant (c) Straight line (c) Straight line	 (d) 42 re of one mole of an ideal (d) C_P re of one mole of an ideal (d) C_P (d) C_P (d) RT
 Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r gas at constant volume through 1K (a) C_V (b) C Q.21. PVy =	ise the temperature (c) 4.2 fise the temperature K is: (c) 1J fise the temperature is: (c) 1J (c) Constant (c) Straight line (c) Straight line	 (d) 42 re of one mole of an ideal (d) C_P re of one mole of an ideal (d) C_P (d) RT (d) Hyperbola
 Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r gas at constant volume through 1K (a) C_V (b) C Q.21. PV₇ =	ise the temperature (c) 4.2 fise the temperature K is: (c) 1J fise the temperature is: (c) 1J (c) Constant (c) Straight line (c) Straight line	 (d) 42 e of one mole of an ideal (d) C_P e of one mole of an ideal (d) C_P (d) RT (d) Hyperbola (d) Hyperbola
 Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r gas at constant volume through 1K (a) C_V (b) C Q.21. PV_Y =	 ise the temperature (c) 4.2 fise the temperature (c) 1J fise the temperature (c) 1J (c) Constant (c) Straight line (c) Straight line (d) Isochoric Proce 	 (d) 42 re of one mole of an ideal (d) C_P re of one mole of an ideal (d) C_P (d) RT (d) Hyperbola (d) Hyperbola
 Q.18. The quantity of heat required to r 1K, in Joules is: (a) 420 (b) 4200 Q.19. The quantity of heat required to r gas at constant pressure through 1 (a) C_V (b) C Q.20. The quantity of heat required to r gas at constant volume through 1K (a) C_V (b) C Q.21. PV₇ =	 ise the temperature (c) 4.2 fise the temperature (c) 1J fise the temperature (c) 1J (c) Constant (c) Straight line (c) Straight line (d) Isochoric Proce 	 (d) 42 re of one mole of an ideal (d) C_P re of one mole of an ideal (d) C_P (d) RT (d) Hyperbola (d) Hyperbola

		XII-Physics Chapter# 11 Page# 45
Q.26.	In which process there is no change in transfer.	n Internal energy of system, with heat
	(a) Thermal Process	(b) Iso-thermal Process
•	(c) Isolated Process	(d) Isochoric Process
Q.27.	. Efficiency of heat engine will be mini	mum when:
	(a) Source and sink are kept at thermal	equilibrium
· · ·	(b) Sink is kept at 0 °C	and the second
	(c) Temperature of source is kept at Inf	inity
	(d) Sink is kept at Absolute zero	
Q.28.	. Entropy change of heat engine would	be maximum when:
	(a) Source and sink are kept at thermal	
.: ·	(b) Sink is kept at 0 °C	
	(c) Temperature of source is kept at inf	inity
	(d) Sink is kept at Absolute zero	
Q.29.	. In which process work done is maxim	um:
ā.,		(b) Isochoric Process
•	· · · · ·	(d) Adiabatic Process
Q.30.	The internal energy of a system depend	
		(b) Entropy
	(c) Pressure	(d) Volume
Q.31.	. The universal gas constant per molec	ule is called:
	(a) Raleigh-Jean's constant	(b) Boltzman Constant
	(c) Gas constant	(d) Stefan's constant
Q.32.	$1 \operatorname{Cal} = \J.$	
	(a) 42 (b) 420	(c) 0.42 (d) 4.2
Q.33.	The difference of Molar specific he constant volume is equal to the:	eat capacity at constant pressure and at
	(a) Avogadro's number	(b) Boltzman Constant
	(c) Universal Gas constant	(d) Non of these
Q.34.	The machine which works on the prin	nciple of Kelvin's statement is:
· . *	(a) Refrigerator	(b) Heat engine
÷	(c) Thermostat	(d) Oven
Q.35.	The machine which works on the Prin	nciple of claussius statement is:
	(a) Refrigerator	(b) Heat engine
	(c) Thermostat	(d) Oven
Q.36.	There are four rods of same substandifferent lengths. When they are temperature the linear thermal expan	nce and same area of cross action but of heated through the same range of asion will be maximum in:
н 1910 - А 19		(c) 1.0m rod (d) 10m rod

XII-Physics Chapter# 11 Page# 46 Q.37. Increase in length per unit length per degree rise in temperature of aluminum rod of 10m is 24 x 10^{-6} /C. What would be the increase in volume per unit volume per degree rise in temperature of a cube of aluminum of volume 100m³ when both are heated through the same range of temperature? (a) 72 x $10^{-6}/C$. **(b)** 7.2 x $10^{-3}/^{\circ}$ C. (c) 24×10^{-6} /C. (d) $2.4 \times 10^{-3}/^{\circ}$ C. Q.38. Linear thermal expansion does not take place in which of the following: (a) Water (b) Iron stick. (c) Glass rod (d) Steel bar Q.39. Ratio between the coefficient of linear thermal expansion and coefficient of cubical thermal expansion is: (a) 1:3 (b) 3:1 (c) 6:2 (d) a and b are correct. Q.40. A fixed mass of a gas is heated at constant volume. Which one of the following will not change? (a) Average distance between the molecules. (b) K. E. of the molecules. (c) Average speed of the molecules. (d) Frequency of collisions of the molecules. Q.41. The pressure of a fixed mass of gas increases when it is heated at constant volume is due to: (a) Increase in Average speed of the molecules. (b) Gas becomes light. (c) Increase in average distance between the molecules. (d) Elastic molecular collision. Q.42. Change in temperature of a body is 50°C. The change in temperature on the Kelvin Scale is: (a) 50 K (b) 323 K (c) 70 K (d) 30 K Q.43. Absolute zero of a gas is the temperature at which its: (a) K.E. is zero (b) Volume is zero (c) P.E. is zero (d) a and b are correct. Q.44. Bimetallic thermostat is used to: (a) To increase the temperature. (b) To increase the K.E. of molecules of substance. (c) Measure the temperature. (d) To control the temperature. Q.45. At volume V and temperature T, the pressure of N molecules the gas is P. If the number of molecule of the gas is doubled at constant volume then: (a) Temp. will become half. (b) Temp. will become twice. (c) Pressure will become half. (d) Pressure will become twice. Q.46. The total K.E. of molecules of gas gives the measurement of: (a) Temperature of the gas. (b) Specific heat capacity of the gas. (c) Heat energy of the gas. (d) Internal energy of the gas.

XII-Physics Chapter# 11 Page# 47 0.47. At constant pressure the volume of the given mass of a gas is V at temperature T. At what temperature volume of the gas will be 4V: (**d**) $\frac{1}{2}$ T. (b) $\frac{1}{4}$ T (c) 2T. (a) 4T Q.48. When ice cube melts into water the ice water system undergoes a change such that: (a) Both entropy and the internal energy of system increase. (b) Entropy of the system decreases but internal energy of the system decreases. (c) Entropy of the system increases and internal energy of the system remains constant. (d) Entropy of the system increases and internal energy decreases. Q.49. The temperature of a substance changes from -20° C to 20° C. What would be the change on Kelvin Scale? (b) 293 K. (c) 0 K. (d) 20 K. (a) 40 K. 0.50. If heat energy is removed from an object, its temperature will normally. (a) does not change. (b) Rise. (d) Falls then rise (c) Falls. Q.51. The root mean square speed of the molecules of an ideal gas in a sealed container is v. The gas is heated until the pressure in the container is tripled. The r.m.s. Speed is now. (a) $\sqrt{3}$ v. (b) v/9. (c) 9v. (d) 3. Q.52. The average K.E. of the molecules of an ideal in a closed vessel is increased by a factor 4. What would be pressure of the gas? (b) It will increases by a factor of 2. (a) It will remain the same, (c) It will increases by a factor of 4. (d) It will increases by a factor of $\sqrt{2}$. Q.53. If ΔQ heat energy is supplied to the system and ΔW is the work done by the system then internal energy retained by the system is: (b) $\Delta Q - \Delta W$. (c) $\Delta U + \Delta W$. (a) $\Delta W - \Delta V$. (d) $\Delta U - \Delta W$. process is obtained form the internal energy of Q.54. The work done during _ a gas: (a) Isobaric. (b) Isochoric. (c) Adiabatic. (d) Isothermal. O.55. The process in which whole amount of heat energy supplied is used to increase the internal energy is: (c) Adiabatic. (d) Isothermal. (a) Isobaric. (b) Isochoric. Q.56. In an isothermal process work done is maximum and change in internal energy is: (b) Zero. (c) Maximum. (d) Negative. (a) Minimum. O.57. A fixed mass of a gas is heated at constant volume, which one of the follow would not change? (b) Molecular motion. (a) Temperature. (d) Density of gas. (c) Internal energy.

XII-Physics Chapter# 11 Page# 48 Q.58. The statement of the first law of thermodynamics implies that: (a) All the work is mechanical. (b) Energy remains conserve. (c) No heat can enter or leave the system. (d) The temperature remains constant. Q.59. The molar specific heat of an ideal gas is greater at constant pressure than at constant volume because: (a) There are more number of collisions at constant volume. (b) The molecules move fast. (c) Additional energy is needed for the external work at constant pressure. (d) The molecules acquire greater K.E. at constant pressure. Q.60. The molar specific heat of an ideal monatomic gas at constant pressure is: (d) 3/2R(a) 2R (b) 5/2R. (c) R/2Q.61. When a monatomic ideal gas under goes an isothermal change; then: (a) There would be no exchange of heat with the surrounding (b) No external work, will be done. (c) There would be no change of the internal energy (d) The temperature changes. Q.62. The efficiency of Carnot engine depends upon (a) Temperature of the both source and sink only (b) Temperature of the sink only. (c) Temperature of the source only. (d) None of these. Q.63. The efficiency of the Carnot engine is directly proportional to the: (a) Temperature of the working substance. (b) Difference of temperature of heat source and sink. (c) Temperature of the source only. (d) Temperature of the sink only. Q.64. For an ideal gas an isobaric change is given by: 1 1 (b) General gas law (a) Coulomb's law (d) Charle's law (c) Boyle's law Q.65. If T_1 is the temperature of the heat source and T_2 is the temperature of the heat sink then the efficiency of the Carnot engine will be: (d) $T_1 - T_2 / T_1$ **(b)** $T_1 + T_2 / T_1$ (c) $T_2 - T_1 / T_1$ (a) $T_1 + T_2 / T_2$ Q.66. The efficiency of Carnot heat engine is always: (b) Less than 100%. (a) More than 100%. (d) None of these. (c) 100%. Q.67. If Q_1 is the amount of heat energy supplied to the Carnot heat engine and Q_2 is the heat energy rejected to the sink. The efficiency of the heat engine is directly proportional to the: (d) $Q_1 + Q_2$. **(b)** $Q_2 + Q_1$. (c) $Q_1 - Q_2$. (a) $Q_2 - Q_1$. **).68.** For an ideal gas an isothermal change is given by: (a) Coulumb's Law. (b) General gas Law. (c) Boyle's Law. (d) Charle's Law

XII-Physics Chapter# 11 Page# 49

- Q.69. Two equal masses of an ideal gas at same temperature and pressure are compressed to half of their volumes, one of them isothermally and the other adiabatically. Which one of the following would be same for both?:
 - (a) The internal energy of the compressed gases.
 - (b) Heat given out during compression.
 - (c) Temperature of the compressed gases.
 - (d) None of these.

Q.70. Two Carnot heat engines would have same efficiencies when:

- (a) The difference of temperature of their heat sources and heat sinks is same.
- (b) The temperature of their heat sources is same.
- (c) The same amount of heat energy is supplied to them.

(d) None of these.

- Q.71. Entropy is the measure of the _____ of a system:
 - (a) Disorder. (b) Work done.
 - (c) Internal energy. (d) Change in temperature.

Q.72. When ice melts then entropy of the system:

(a) Does not change.

(c) Increases

(b) Is zero.(d) Decreases

(d) ∆W.

- Q.73. The maximum efficiency of a heat engine could be increased by:
 - (a) Decreasing the temperature of hot and cold bodies simultaneously.
 - (b) Keeping the temperature of hot and cold bodies constant.
 - (c) Increasing the temperature of hot and cold bodies simultaneously.
 - (d) Decreasing the temperature of sink and increasing the temperature of source.
- Q.74. Net change in entropy of a system in a natural process is:
 (a) Zero.
 (b) Infinite.
 (c) Positive.
 (d) Negative.
- Q.75. Change in internal energy of system at constant pressure is:
 - (a) $nC_v\Delta T$ (b) Zero. (c) ΔQ .

XII-Physics Chapter# 11 Page# 50

ANSWER KEY

	(1) d	(2) a	(3) c	(4) c	(5) b
	(6) d	(7) b	(8) b	(9) c	(10) c
	(11) b	(12) c	(13) a	(14) d	(15) c
	(16) b	(17) d	(18) b	(19) d	(20) a
	(21) c	(22) d	(23) c	(24) d	(25) c
	(26) b	(27) a	(28) a	(29) c	(30) a
	(31) b	(32) d	(33) c	(34) b	(35) a
·	(36) b	(37) a	(38) a	(39) a	(40) a
	(41) a	(42) a	(43) d	(44) d	(45) d
	(46) c	(47) a	(48) a	(49) a	(50) c
	(51) a 🔪	(52) c	(53) b	(54) c	(55) b
	(56) b	(57) d	(58) b	(59) c	(60) b
	(61) c	(62) a	(63) b	(64) d	(65) d
	(66) b	(67) c	(68) c	(69) d	(70) a
	(71) a	(72) c	(73) d	(74) c	(75) a