Federal Board HSSC - II Examination Physics - Mark Scheme

SECTION B

Q. 2

Circuit

$-\mathrm{I}_{1} \mathrm{R}_{1}-\mathrm{E}_{2}-\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right) \mathrm{R}_{2}=0$
(OR)
$-\mathrm{I}_{1} \mathrm{R}_{1}+\mathrm{E}_{2}-\left(\mathrm{I}_{1}-\mathrm{I}_{2}\right) \mathrm{R}_{2}=0$
and
$-\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right) \mathrm{R}_{2}-\mathrm{I}_{2} \mathrm{R}_{3}+\mathrm{E}_{1}=0$
(OR)
$-\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right) \mathrm{R}_{2}-\mathrm{I}_{2} \mathrm{R}_{3}-\mathrm{E}_{1}=0$
Q. 3
i. Soft iron can be magnetized and demagnetized easily. (1 mark)
ii. Hysteresis loss for soft iron is small.

$$
\begin{aligned}
& \mathbf{X}_{\mathrm{c}}=\frac{1}{a c}=\frac{1}{2 \pi c} \\
& \mathbf{X}_{\mathrm{c}} \alpha_{\frac{1}{f}}
\end{aligned}
$$

and $\quad \mathrm{X}_{\mathrm{L}}=\alpha=\mathrm{X}_{\mathrm{L}}$
X_{L}
With the increase of frequency, reactance of a capacitor decreases whereas reactance of an inductor increases and vice versa

(1 mark)
At resonance the impedance of the circuit is resistive. Therefore current and voltage are in phase i.e. $\theta=o^{0}$. The power factor $\left(\operatorname{Cos} \theta=\cos ^{\circ}\right)$ is 1 .

Q. 6

$$
\begin{equation*}
\mathrm{X}=\overline{1 \bar{\pi}+\pi s} \tag{2}
\end{equation*}
$$

When

$$
\begin{aligned}
& \begin{array}{rll}
\mathrm{A} & =0 & \&
\end{array} \quad \mathrm{~B} \\
& \text { Then } \mathrm{X}=0 \\
& \text { mark) }
\end{aligned}
$$

Q. 7

In a transistor $\mathrm{E}-\mathrm{B}$ Junction is always forward biased, so, small V_{BB} is required

Q. 8

Equation for de-Broglie wavelength

$$
\lambda=\frac{h}{P}=\frac{h}{m v}
$$

For macroscopic objects ‘ ' ' is v.v. small which cannot be observed.

Q. 9

In the production of x -rays, electrons are incident on the target material, which gives a large amount of KE to the target and target material will become very hot which may melt, so we use a target of high M.P.

Q. 10

Mass defect

$$
\Delta \mathrm{M}=\mathrm{M}_{\mathrm{p}}+\mathrm{M}_{\mathrm{N}}-\mathrm{M} \text { (nucleus) }
$$

According to Einstein's equation

$$
\mathrm{E}=\Delta \mathrm{MC}^{2}
$$

This additional mass changes into B.E of the atom.

Q. 11

Magnetic force on a charged particle when projected at right angles into a magnetic field is

$$
\left.\bar{F}-a(\bar{C} \times \bar{B}) \quad \text { (i.e. } \theta=90^{\circ}\right)
$$

or $\quad \mathrm{F}=\mathrm{qV} \mathrm{B} \sin 90^{\circ}$

$$
\mathrm{F}=\mathrm{q} V \mathrm{~B}
$$

'F' provides necessary centripetal force to the charged particles.
Therefore they follow a circular path.
Q. 12
γ-rays are coming out from the nucleus of an unstable atom
X-rays are obtained by the inner shell transition of electrons.
Q. 13

As $\quad \mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \times \frac{q}{r}$

$$
\mathrm{q}=-4 \mu \mathrm{C}=-4 \quad 10^{-6} \mathrm{C}
$$

$$
\mathrm{r}=20 \mathrm{~cm}=0.2 \mathrm{~m}
$$

$$
\begin{align*}
& \frac{1}{4 \pi \varepsilon_{0}}=9: 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \\
& \mathrm{~V}=\frac{9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2} \times\left(-4 \times 10^{-6} \mathrm{C}\right)}{(0.2 \mathrm{~m})^{2}}=-9 \times 10^{5} \mathrm{Volt}
\end{align*}
$$

mark)
Q. 14

$$
\begin{align*}
& \mathrm{I}=1.2 \mathrm{~A} \tag{3}\\
& \mathrm{~A}=10^{-4} \mathrm{~m}^{2} \\
& \mathrm{n}=5 \\
& \mathrm{q}=\mathrm{e}=1.6: 10^{28} \mathrm{~m}^{-3} \\
& \mathrm{v}=? \\
& \mathrm{I}=\mathrm{nqAv} \\
& \mathrm{v}=\frac{I}{n q A}=\frac{\mathrm{C}}{5 \times 10^{28} \times 1.6 \times 10^{-19} \times 10^{-4}}=1.5 \times 10^{-6} \mathrm{~ms}^{-1}
\end{align*}
$$

(OR)

Since the electron and proton possess same momentum

$$
\begin{gather*}
\mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}=\mathrm{m}_{\mathrm{p}} \mathrm{v}_{\mathrm{p}} \\
\frac{v_{\mathrm{e}}}{v_{\mathrm{p}}}=\frac{m_{p}}{m_{\mathrm{e}}} \tag{1}
\end{gather*}
$$

Force $\left(F_{B}\right)$ due to magnetic field provides $F c$ i.e. $F_{c}=F_{B}$

$$
\begin{align*}
& \frac{m v^{2}}{r}=\operatorname{Bev} \\
& v=\frac{B e r}{m} \tag{1mark}
\end{align*}
$$

Then $\frac{v_{e}}{v_{p}}=\frac{B_{e} r_{e}}{m_{e}} / \frac{B_{e} r_{p}}{m_{p}}$

$$
\begin{align*}
& \frac{v_{e}}{v_{p}}=\frac{r_{e}}{r_{p}} \times \frac{m_{p}}{m_{e}} \\
& \frac{r_{e}}{r_{p}}=\frac{v_{e}}{v_{p}} \times \frac{m_{e}}{m_{p}} \\
& \frac{t_{t}}{}=1 \quad \text { using equation (1) } \tag{2marks}
\end{align*}
$$

Q. 15

To get a resultant of 60Ω, which is less than 100Ω, a resistor R_{2} is connected in parallel to $\mathrm{R}_{1}=100 \Omega$
Then

$$
\begin{aligned}
& \frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \Rightarrow \frac{1}{R_{2}}=\frac{1}{R}-\frac{1}{R_{1}} \\
& \frac{1}{R_{2}}=\frac{1}{60}-\frac{1}{100}=\frac{5-3}{300}=\frac{2}{300}=\frac{1}{150} \\
& \mathrm{R}_{2}=150 \Omega
\end{aligned}
$$

(OR)

$$
\begin{array}{ll}
\mathrm{F}=\mathrm{qvB}=\mathrm{Bev} & \left(\theta=90^{\circ}\right) \\
\frac{m v^{2}}{r}=B e v \\
v=\frac{B e r}{m} \\
v=\frac{(4 B) e r}{m}=4 v & \left(\begin{array}{lll}
B^{\prime}=4 B &)
\end{array}\right.
\end{array}
$$

As $\mathrm{E}=\frac{1}{2} m v^{2}$

$$
\begin{align*}
& \hat{\mathrm{E}}=\frac{1}{2} m\left(v^{\prime}\right)^{2}=\frac{1}{2} m(4 v)^{2} \\
& \hat{\mathrm{E}}=16\left(\frac{1}{2} m v^{2}\right) \\
& \hat{\mathrm{E}}=16 \mathrm{E} \tag{2marks}
\end{align*}
$$

Q. 16

$$
\begin{align*}
& \mathrm{P}=\frac{\frac{V^{2}}{R}}{2} \tag{3}\\
& \mathrm{P}=\frac{V^{2}}{3 \mathrm{~B}}=10 \mathrm{~W} \quad \because(=3 \mathrm{R})
\end{align*}
$$

mark)
When connected in parallel

$$
\begin{aligned}
& = \\
& =\frac{V^{2}}{R / 3}=3 \times \frac{V^{2}}{R}=9\left(\frac{V^{2}}{3 R}\right) \Rightarrow P^{\prime}=9 P \\
& =9 \quad 10 \mathrm{~W} \quad\left({ }^{2} \mathrm{P}=10 \mathrm{~W}\right) \\
& =90 \mathrm{~W}
\end{aligned}
$$

(OR)
Energy of light = \# of photons : Energy of one photon
$\mathrm{E}=\cdots$

$$
=\frac{E}{W}=\frac{E}{U}
$$

mark)

$$
=\frac{1 \times 10^{-18} \times 600 \times 10^{-9}}{6.63 \times 10^{-34} \times 3 \times 10^{8}}=3
$$

mark)

Q. 17

Since

$$
\begin{align*}
& \mathrm{P}=\mathrm{I}^{2} \mathrm{R}_{1} \\
& \mathrm{I}^{2}=\frac{P}{R_{1}} \Rightarrow I=\sqrt{\frac{P}{R_{1}}}=\sqrt{\frac{5}{20}}=0.5 \mathrm{~A} \tag{1mark}
\end{align*}
$$

As

$$
\begin{align*}
& \mathrm{R}=\frac{V}{I}=\frac{24 V}{0.5 A}=48 \Omega \\
& \mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2} \quad \mathrm{R}_{2}=\mathrm{R}-\mathrm{R}_{1} \\
& \mathrm{R}_{2}=48 \Omega-20 \Omega \\
& \mathrm{R}_{2}=24 \Omega \tag{2marks}
\end{align*}
$$

(OR)
For a solenoid of length ' ', cross-sectional area 'A' \& \# of turns 'N'

$$
\begin{align*}
\varepsilon & =-N \frac{\Delta \Phi}{\Delta t}=-N \frac{\Delta(B A)}{\Delta t} \\
\varepsilon & =-N A \frac{\Delta B}{\Delta t} \tag{1mark}\\
& =\mu_{0} \mathrm{nI}=\mu_{0} \frac{\|}{l} \quad \text { (for a solenoid) } \\
\varepsilon & =-N A \frac{\Delta\left(\mu_{o} \frac{N}{l} I\right)}{\Delta t} \\
\varepsilon & =\frac{-N A \mu_{o}}{l} \times \frac{\Delta I}{\Delta t} \tag{1}
\end{align*}
$$

Using

$$
\begin{equation*}
\varepsilon=-L \frac{\Delta I}{\Delta t} \tag{2}
\end{equation*}
$$

Comparing equation (1) and (2)

$$
\begin{aligned}
& \nearrow-L \frac{\Delta /}{t}=\frac{-\mu_{o} N^{2} A}{l} / \Delta t \\
& L=\mu_{o} \frac{N^{2}}{l} A=\mu_{o} n^{2} l A=\mu_{o} n N A
\end{aligned}
$$

Which is the required expression

Q. 18

For $\mathrm{R}_{1} \& \mathrm{R}_{2}$ let their resultant be $R^{\prime}=4 \Omega$
Resultant of $R^{\prime} \& R_{3}$ connected in parallel is $R^{\prime \prime}=\frac{4 \times 2}{4+2}=\frac{4}{3} \Omega \quad$ (1 mark)
$R^{\prime \prime} \& \mathrm{R}_{4}$ are in series their resultant is $R^{\prime \prime \prime}=\left(\frac{4}{3}+2\right)=\frac{10}{3} \Omega$

Resultant of ${ }^{R^{n}} \& \mathrm{R}_{5}$ connected in parallel is $\mathrm{R}=\frac{2 \times \frac{10}{3}}{\frac{10}{3}+2}=\frac{20 / 3}{16 / 3}=\frac{20}{16}=1.25 \Omega$
marks)
(OR)
$\mathrm{R}=\rho \frac{L}{A}=\rho \frac{4 L}{\pi d^{2}}$
$\mathrm{V}=\mathrm{IR}=\mathrm{I} \quad \rho \frac{4 L}{\pi d^{2}}$
For the wire ' x ' $\quad \mathrm{V}_{\mathrm{x}}=\mathrm{I}_{\mathrm{x}} \rho \frac{4 L}{\pi d_{x}^{2}}$
For the wire ' y ' $\quad \mathrm{V}_{\mathrm{y}}=\mathrm{I}_{\mathrm{y}} \rho \frac{4 L}{\pi d_{v}^{2}}$
$\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{\mathrm{y}}$ (as the wires are connected in parallel)
$\mathrm{I}_{\mathrm{x}} . \rho \frac{4 L}{\pi d_{*}^{2}}=\mathrm{I}_{\mathrm{y}} \times \rho \frac{4 L}{\pi d_{j}^{2}}$
$\frac{I_{x}}{d_{x}^{2}} \frac{I_{y}}{d_{y}^{2}}$
$\frac{4 I_{x}}{d_{y}^{2}}=\frac{I_{y}}{d_{y}^{2}} \quad$ as $\mathrm{d}_{\mathrm{x}}=\frac{d_{y}}{2}$
$\Rightarrow t_{v}=4 I_{\text {s }}$
Fraction of current which passes

$$
\begin{equation*}
\text { through ' } \mathrm{X} \text { ' }=\frac{I_{x}}{\text { total current }}=\frac{I_{x}}{I_{x}+I_{y}}=\frac{I_{x}}{5 I_{x}}=\frac{1}{5}=0.20 \tag{2marks}
\end{equation*}
$$

Q. 19

The combined capacitance ' C ' is given by
$\mathrm{C}=\frac{C_{1} \times C_{2}}{C_{1}+C_{2}}=\left(\frac{3.0 \times 6.0}{3.0+6.0}\right) \mu F=2.0 \mu F=2.0 \times 10^{-6} F$
Net charge stored
$\mathrm{Q}=\mathrm{CV}=2.0 \quad 10^{-6}$ 18
$\mathrm{Q}=36 \cdot 10^{-6} \mathrm{C}$
For capacitors connected in series, charge is same.

(OR)

$$
\begin{gathered}
(\mathrm{KE})_{\max }=\mathrm{Ve} \\
\frac{1}{2} m v^{2}=V e \\
m v=\sqrt{2 m v e}
\end{gathered}
$$

Now

$$
\begin{equation*}
\lambda=\frac{h}{P}=\frac{h}{m v}=\frac{h}{\sqrt{2 m V e}} \tag{1mark}
\end{equation*}
$$

$$
\lambda=\frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.11 \times 10^{-31} \times 100 \times 1.6 \times 10^{-19}}}
$$

mark)
In the electromagnetic spectrum this would be X -Radiation.

SECTION C

Q. 20

- Need of transformer
(1 mark)
- Explanation and working principle + figure
(2 marks)
- Transformer equation + step up + step down
(3 marks)
- Power losses and their remedies

Q. 21

a. Statement of Gauss's law

Explanation of Gauss's law using spherical body + figure (2 marks)
Derivation for electric field $\quad=\frac{\sigma}{2 \varepsilon_{o}} \hat{r}+$ Figure
b.
(1 mark)

Obviously, the zero field location will be at pt. P $\mathrm{E}_{1}=\mathrm{E}_{2}$

$$
\begin{aligned}
& \frac{1}{4 \pi \varepsilon_{o}} \frac{q_{1}}{x^{2}}=\frac{1}{4 \pi \varepsilon_{o}} \times \frac{q_{2}}{(x+3)^{2}} \\
& \frac{1 \times 10^{-6}}{x v}=\frac{4 \times 10^{-6}}{(x+3)^{2}} \\
& (\mathrm{x}+3)^{2}=4 \mathrm{x}^{2} \\
& \mathrm{x}+3=2 \mathrm{x}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{x}=3 \mathrm{~m} \quad \quad(1 \mathrm{mark}) \tag{10}
\end{equation*}
$$

Q. 22

a. Definition
(1 mark)
Construction + figure + working
b. Sensitivity factor + methods to increase the sensitivity
(1+2 = 3 marks $)$
c. Diagram for ammeter
(1 mark)
Diagram for voltmeter
(1 mark)

(OR)

a. Definition

Explanation + figure
Results (1 mark for each result)
b. $\quad=300 \mathrm{~nm}=300 \quad 10^{-9} \mathrm{~m}$

$$
=2.46 \mathrm{ev}=2.46 \quad 1.6 \quad 10^{-19} \mathrm{~J}
$$

$$
(\mathrm{KE})_{\text {max }}=\mathrm{hf}-\phi=\frac{h c}{\lambda}-\phi
$$

$$
(\mathrm{KE})_{\max }=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{300 \times 10^{-9}}-2.46 \times 1.6 \times 10^{-19}
$$

$$
(\mathrm{KE})_{\text {max }}=\left(6.63: 10^{-19}-3.936: 10^{-19}\right) \mathrm{J}
$$

$$
(\mathrm{KE})_{\max }=2.693 \cdot 10^{-19} \mathrm{~J}
$$

$$
(\mathrm{KE})_{\max }=1.68 \mathrm{ev}
$$

$$
=\mathrm{hf}_{\mathrm{o}}=\frac{\mathrm{k}}{\bar{h}}
$$

$$
\lambda_{o}=\frac{h c}{\phi}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{2.46 \times 1.6 \times 10^{-19}}
$$

$$
\lambda_{o}=5.05 \times 10^{-7} \mathrm{~m}
$$

$$
i_{n}=505 n m
$$

