Federal Board HSSC-II Examination Physics Model Question Paper

SECTION - A

Time allowed: 25 minutes
Marks: 17

Note: Section-A is compulsory and comprises pages 1-5. All parts of this section are to be answered on the question paper itself. It should be completed in the first 25 minutes and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.
Q. 1 Insert the correct option i.e. A/B/C/D in the empty box opposite each part. Each part carries one mark.
i. Which of the following is the unit of electric intensity?
A. $\quad \mathrm{Nm}$
B. NC
C. $\quad \mathrm{NC}^{-1}$
D. NS^{-1}
ii. Two point charges $-10 \mu \mathrm{c}$ and $+10 \mu \mathrm{c}$ are placed 10 cm apart. What is the potential at the centre of the line joining the two chargd \qquad
A. -2 V
B. -1 V
C. Zero
D. 2 V
iii. For which of the following AC can NOT be used? \square
A. Heating
B. Lighting
C. Transforming voltage
D. Electroplating

DO NOT WRITE ANYTHING HERE

iii. A square sheet of side ' a ' is held perpendicular to a uniform electric field of strength E. What is the electric flux linked with the surface?
A. Zero
B. Ea
C. $E a^{2}$
D. 4Ea
v. A cylindrical metal wire of length ' l ' and cross-sectional area ' A ' has resistance ' R ', conductance ' G ', resistivity ' ρ ' and \square conductivity ' σ '. Which of the following expressions for ' σ ' is valid?
A. $G R / \rho$
B. $\mathrm{R} l / \mathrm{A}$
C. $\rho R / G$
D. GA / l
vi. If a charge of $1 \mu \mathrm{C}$ experiences a force of $10^{-6} \mathrm{~N}$ at a point, what will be the electric intensity at that point?
\square
A. $\quad 10^{-12} \mathrm{NC}^{-1}$
B. $\quad 10^{-6} \mathrm{NC}^{-1}$
C. $1 \mathrm{NC}^{-1}$
D. $10^{6} \mathrm{NC}^{-1}$
vii. What will be the magnitude of gain of an inverting op-amp having resistances $\mathrm{R}_{1}=5 \mathrm{k} \Omega$ and $\mathrm{R}_{2}=20 \mathrm{k} \Omega$? \square
A. -5
B. -4
C. 4
D. 5
viii. A number of capacitors each of $2 \mu \mathrm{~F}$ are connected as shown in the figure given below: \square

What is the net capacitance between A \& B?
A. $2 \mu \mathrm{~F}$
B. $4 \mu \mathrm{~F}$
C. $\quad 6 \mu \mathrm{~F}$
D. $10 \mu \mathrm{~F}$
ix. Two copper wires A and B of lengths 1 m and 9 m respectively are found to have same resistance. What is the ratio $\frac{d_{A}}{d_{s}}$ between their diameters?
A. $1: 9$
B. $1: 3$
C. $3: 1$
D. $9: 1$
x. What is the rest mass energy of an object of mass 0.1 g ? \square
A. $\quad 3 \times 10^{8} \mathrm{~J}$
B. $3 \times 10^{13} \mathrm{~J}$
C. $9 \times 10^{13} \mathrm{~J}$
D. $9 \times 10^{16} \mathrm{~J}$
xi. A current flows in a wire of circular cross-section with the free electrons traveling with a mean drift velocity ' v '. If an equal \square current flows in a wire of the same material but of twice the radius, what is the new drift velocity?
A. $\mathrm{v} / 4$
B. $v / 2$
C. v
D. 2 v
xii. Three resistors are connected as shown in the diagram using connecting wires of negligible resistance. \square

What is the resistance between points P and Q ?
A. 1.0Ω
B. $\quad 1.6 \Omega$
C. $\quad 3.7 \Omega$
D. 11Ω
xiii. The half life of a radioactive element is such that $7 / 8$ of a given quantity decays in 12 days. What fraction remains
\square un-decayed after 24 days?
A. $1 / 128$
B. $1 / 64$
C. $1 / 16$
D. $1 / 8$
xiv. Which one of the following bulbs has the least resistance? \square
A. 100 w
B. 200 w
C. 300 w
D. 400 w
xv. The peak value of an AC is $2 \sqrt{ }$ A. What will be its RMS value? \square
A. zero
B. $\quad \therefore$
C. 2 A
D. 2 A
xvi. In the figure given below, what is the potential drop across the resistor R_{3} ? \square

A. 3 V
B. 4 V
C. 9 V
D. 12 V
xvii. In a transformer, laminated sheets with insulation in between are used to minimize: \square
A. Hysteresis loss
B. Voltage loss
C. Eddy currents
D. Magnetic flux

For Examiner's use only
Q. No.1: Total Marks: 17

Marks Obtained:

Page 5 of 5

