XI-Physics Chapter# 9, Page# 21

Numericals

Q.1 How many fringes will pass a reference point if the mirror of a Michelson's interferometer is moved by 0.08mm. The wavelength of light used is 5800A°.

(1998)

Given Data:

Displacement of mirror = $x = 0.08 \text{ mm} = 0.08 \times 10^{-3} \text{ m}$ Wave length of light = $\lambda = 5800 \text{ A}^{\circ} = 5800 \times 10^{-10} \text{ m}$

To Find:

No. of fringes = m = 2

Solution:

We know in Michelson's interferometer

$$x = m\frac{\lambda}{2}$$

$$m = \frac{2x}{\lambda}$$

$$m = \frac{2 \times 0.08 \times 10^{-3}}{5800 \times 10^{-10}}$$

$$m = \frac{2 \times 8 \times 10^{-5}}{58 \times 10^{-8}}$$

$$m = \frac{16}{58} \times 10^{3}$$

$$m = 0.275.86 \times 10^{3}$$

$$m = 275.86$$

$$m = 275 \text{ Fringes}$$
Ans.

Self test: (1)

(i) 271 fringes pass a reference point when the moveable mirror of the Michelson's interferometer is moved by 0.08mm. Find the wavelength of the light used in angstrom.

Ans. [(5900A°)] (2002 P.E)

Self test: (2)

(ii) How much should the moveable mirror of the Michelson's interferometer be moved in order to observe 400 fringes with reference to point the wavelength of the light used is 5890A°. Ans. [0.001] (2002 P.E)

Self test: (3)

How many fringes will pass a reference point if the mirror of a Michelson's interferometer is moved by 0.08mm if the wave length of light used is 5500A° Ans.[291 fringes] (2007 Supp.)

XI-Physics Chapter# 9, Page# 22

Q.2 In a double slit experiment the separation of the slits is 1.9mm and the fringe spacing is 0.31mm at a distance of 1 metre from the slits. Find the wavelength of light? (2006 Supp.)

Given Data:

Separation of slits = d =
$$1.9 \text{mm}$$
 = $1.9 \times 10^{-3} \text{m}$
Fringe spacing = ΔY = 0.31mm = $0.31 \times 10^{-3} \text{m}$
Distance from slits = L = 1m

To Find:

Wavelength of light =
$$\lambda$$
 = ?

Solution:

Fringe Spacing
$$\Delta Y = \frac{L\lambda}{d}$$

$$\lambda = \frac{\Delta Y d}{L}$$

$$\lambda = \frac{0.31 \times 10^{-3} \times 1.9 \times 10^{-3}}{1}$$

$$\lambda = 0.31 \times 1.9 \times 10^{-6}$$

$$\lambda = 5.89 \times 10^{-7} \text{m}$$
Ans.

Self test: (4)

In a double slit experiment the separation of the slits is 1.8mm and the fringe spacing is 0.31mm at a distance of 1200mm from the slits. Find the wave length of light.

(2002 P.E)

Ans.[4.65
$$\times 10^{-7}$$
m]

Q.3 Interference fringes were produced by two slits 0.25mm apart on a screen 150mm from the slits. If eight fringes occupy 2.62mm. What is the wavelength of the light producing the fringes?

Given Data:

Separation of slits =
$$d = 0.25 \text{ mm} = 0.25 \text{ x } 10^{-3} \text{m}$$

Distance from the slits = $L = 150 \text{ mm} = 150 \text{ x } 10^{-3} \text{m}$
8 fringes occupy = $2.62 \text{ mm} = 2.62 \text{ x } 10^{-3} \text{m}$

To Find:

Wavelength =
$$\lambda$$
 = ?

Solution:

8 fringes occupy =
$$2.62 \times 10^{-3} \text{m}$$

1 fringe occupy = $\frac{2.62 \times 10^{-3}}{8}$
 ΔY = $0.3275 \times 10^{-3} \text{m}$

XI-Physics Chapter# 9, Page# 23

Fringe Spacing

$$\Delta Y = \frac{\lambda L}{d}$$

$$\lambda = \frac{\Delta Y d}{L}$$

$$\lambda = \frac{0.3275 \times 10^{-3} \times 0.25 \times 10^{-3}}{150 \times 10^{-3}}$$

$$\lambda = 0.0005458 \times 10^{-6} \times 10^{3}$$

$$\lambda = 5458 \times 10^{-10} \text{m}$$

$$\lambda = 5458 \text{Ans.}$$

Self test: (5)

In a young's double slit experiment the slits are at a distance of 1.8mm and five fringes occupy 15mm at a distance of 120cm from the slits. Find the wavelength of light? Ans: $[4.5 \times 10^{-6}m]$ (2005 Supp.)

Self test: (6)

Interference fringes were produced by light coming from two slits 0.3mm apart. If five fringes occupied 1.75mm on a screen at 2000mm from the slits find the wave length of light used. Ans: $[5.25 \times 10^{-8}m]$ (2000)

Self test: (7)

Interference fringes were produced by two sites 0.25 mm apart on a screen 150 mm from the slits. If ten fringes occupy 3.275 mm. What is the wave length of the light producing fringes. Ans: $[5.45 \times 10^{-7} \text{m}]$ (2008)

- Q.4 Green light of a wavelength 5400A° is diffracted by grating having 2000 lines/cm. (2010)
- (a) Compute the angular deviation of the third order image.
- (b) is a 10th order image possible?

(1998, 2005, 2007 Failures)

Given Data:

Wavelength of light =
$$\lambda$$
 = 5400 A° = 5400 x 10⁻¹⁰m
Length of grating = L = 1 cm = 1 x 10⁻²m
No. of lines = 2000 lines
No. of order = m = 3
No. of order = m = 10

To Find:

(a)

(b)

Angular deviation =
$$\theta$$
 =

Solution:

Grating element = d =
$$\frac{\text{Length of grating}}{\text{No. of lines}}$$

d = $\frac{1 \times 10^{-2}}{2000}$
d = $5 \times 10^{-6} \text{m}$

XI-Physics Chapter# 9, Page# 24

$$m\lambda = d \sin \theta$$

$$\sin \theta = \frac{m\lambda}{d}$$

$$\sin \theta = \frac{3 \times 5400 \times 10^{-10}}{5 \times 10^{-6}}$$

$$\sin \theta = \frac{1.62 \times 10^{-6}}{5 \times 10^{-6}}$$

$$\sin \theta = 0.324$$

$$\theta = \sin^{-1}(0.324)$$

$$\theta = 18.9^{\circ}$$
Ans.
$$\sin \theta = \frac{10 \times 5400 \times 10^{-10}}{5 \times 10^{-6}}$$

$$\sin \theta = 1.08$$

Since value of Sin θ can not be greater than 1, therefore 10^{th} order image is impossible.

Self test: (8)

(b)

A diffraction grating having 200 lines per millimeter is illuminated by light of wavelength 5895A°. Calculate he angular deviation of the second order bright lines.

Ans:
$$[\theta = 13.63 \]$$

(2006 Failures)

Self test: (9)

Q.5 Light of wavelength 6 x 10^{-7} m falls normally on a diffraction grating with 400 lines per millimeter. At what angle to the normal are the 1^{st} , 2^{nd} , and 3^{rd} order spectra produced. Ans: $[\theta = 13.88^{\circ}, \theta = 28.68^{\circ}, \theta = 46.05^{\circ}]$

Self test: (10)

A monochromatic light from helium-neon LASER of wave length 6.328nm falls normally on a grating with 5000 lines /cm. Find the angles to the normal for 1^{st} and 2^{nd} order maxima.

Q.6 If a diffraction grating produced a 1st order spectrum of light of wavelength $6x10^{-7}$ m at an angle of 20° from the normal. What is its spacing and also calculate the number of lines per mm?

(2009 Suppl. 2011 Annual)

Given Data:

No. of order = m = 1
Wavelength of light =
$$\lambda$$
 = 6×10^{-7} m
Angular deviation = θ = 20°
Length of grating = 1mm = 1×10^{-3} m

To Find:

(b) No. of lines/mm
$$=$$

XI-Physics Chapter# 9, Page# 25

Solution:

(a) We know that diffraction grating equation

$$m\lambda = d \sin \theta$$

$$d = \frac{m\lambda}{\sin \theta}$$

$$d = \frac{1 \times 6 \times 10^{-7}}{\sin 20^{\circ}}$$

$$d = \frac{6 \times 10^{-7}}{0.342}$$

$$d = 1.75 \times 10^{-6} \text{m}$$
Ans.

(b) Length of grating =
$$1 \text{ mm} = 1 \times 10^{-3} \text{ m}$$

$$d = \frac{\text{Length of grating}}{\text{No. of lines}}$$
No. of lines = Length of grating

No. of lines =
$$\frac{\text{Edignfor gradies}}{d}$$
No. of lines =
$$\frac{1 \times 10^{-3}}{d}$$

Self test: (11)

How many lines per centimeter are there in a grating in which the light of wavelength 4160A° falls normally and a second order spectrum is obtain at an angle of 12°. (2005 Supp.)

Ans: [2500 lines/em]

Self test: (12)

When a light of wavelength 6000A° falls on a diffraction grating, it produces ϵ second order spectrum at an angle of 30° from the normal. Find

(i) The grating element

(ii) The number of lines per millimeter.

Ans: $[d = 2.4 \times 10^{-6}, 417 \text{ lines/nm}]$

 $(2003 \ P.E)$

Self test: (13)

If a diffracting grating produces a first order spectrum of light of wave length $6 > 10^{-7}$ m at an angle of 20° from the normal. Calculate the number of lines per mm Ans: (570 lines per mm) (2007)

XI-Physics Chapter# 9, Page# 26

Q.7 Newton's rings are formed between a lens and a flat glass surface of wavelength 5.88 x 10^{-7} m. If the light passes through the gap at 30° to the vertical and the fifth dark ring is of diameter 9mm. What is the radius of the curvature of the lens?

Given Data:

Wavelength of light =
$$\lambda$$
 = 5.88×10^{-7} m

No. of dark ring
$$=$$
 m $=$ 5

Diameter of
$$5^{th}$$
 dark ring = $D_5 = 9mm = 9 \times 10^{-3} m$

Light passes at the angle =
$$\theta$$
 = 30°

To Find:

Solution:

$$\gamma_5 = \frac{D_5}{2} = \frac{9 \times 10^{-3}}{2}$$

$$= 4.5 \times 10^{-3} \text{m}$$

For mth dark ring

$$\gamma = \sqrt{\frac{m\lambda R}{\cos \theta}}$$

Squaring both sides

$$\gamma^2 = \frac{m\lambda R}{\cos\theta}$$

$$R = \frac{\gamma^2 \cos \theta}{m \lambda}$$

$$R = \frac{(4.5 \times 10^{-3})^2 \cos 30^{\circ}}{5 \times 5.88 \times 10^{-7}}$$

$$R = \frac{2.025 \times 10^{-5} \times 0.866}{2.94 \times 10^{-6}}$$

$$R = 5.96m Ans.$$

Q.8 How far apart are the diffracting planes in a NaCl crystal for which X-rays of wavelength 1.54A° make a glancing angle of 15°-54′ in the 1st order?

(2005, 2005 Failure)

Given Data:

Wavelength of X-rays =
$$\lambda$$
 = 1.54A° = 1.54 x 10⁻¹⁰m

No. of order
$$= m = 1$$

Glancing angle =
$$15^{\circ}54'$$
 = $15 + \frac{54}{60} = 15.9^{\circ}$

XI-Physics Chapter# 9, Page# 27

To Find:

Distance between diffracting plane = d = ?

Solution:

We know in diffraction of X-rays through crystal is

$$2d \sin \theta = m\lambda$$

$$d = \frac{m\lambda}{2 \sin \theta}$$

$$d = \frac{1 \times 1.54 \times 10^{-10}}{2 \times \sin 15.9^{\circ}}$$

$$d = \frac{1.54 \times 10^{-10}}{2 \times 0.2739}$$

$$d = \frac{1.54 \times 10^{-10}}{0.5479}$$

$$d = \frac{2.81 \times 10^{-10}m}{0.5479}$$
Ans.

Self test: (14)

Q.9 A parallel beam of X-rays is diffracted by rocksalt crystal the 1st order maximum being obtained when the glancing angle of incidence is 6 degree and 5 minutes. The distance between the atomic planes of the crystal is 2.81 x 10⁻¹⁰m. Calculate the wavelength of the radiation.

Ans:

(2009)

Self test: (15)

X - rays of wave length 1.54A° are diffracted by a crystal whose plane are 2.81A° apart. Find the glancing angle for the first order. (2004)

Ans: $[\theta = 15.9 \, \%]$

XI-Physics Chapter# 9, Page# 28

EXTRA PROBLEM:

Q.1 If the diameter of the 10th bright Newton's ring is 0.005m when the light of wavelength 5893A° is used. What is the radius of curvature of the plano convex lens? Also calculated the thickness of the air film correspondy to this lens.

(2003 P.M, 1994)

Given Data:

Diameter of 10th bright ring = D = 0.005m

Radius of 10th bright ring =
$$\frac{D}{2}$$
 = $\frac{0.005}{2}$ = 0.0025m

Wavelength of light = λ = 5893A° = 5893 × 10⁻¹⁰m

No. of ring = N = 10

To Find:

Radius of curvature = R = ?

Thickness of air film = t = ?

<u>Solution:</u>

Squaring both sides
$$r_{N}^{2} = R(N-0.5)\lambda$$

$$R = \frac{r_{N}^{2}}{(N-0.5)\lambda}$$

$$R = \frac{(0.0025)^{2}}{(10-0.5)5893\times10^{-10}}$$

$$R = \frac{0.00000625}{9.5\times5893\times10^{-10}}$$

$$R = 1.11m \quad Ans.$$

Self test: (16)

If the radius of the 14^{th} bright Newton's ring is 1.0mm when the light of wavelength 5.89 x 10^{-7} m is used. What is the radius of curvature of the lower surface of the lens used. Ans. [0.125m] (2003 Failure) (1999), 2009 Suppl.

Self test: (17)

Determine the wavelength of a monochromatic light used if 14^{th} bright Newton's ring has radius of 1mm when a Plano convex lens of radius of curvature 120mm is used. Ans: $[6.17 \times 10^{-7}m]$ (2001) (1997)

Self test: (18)

If the radius of 14th bright Newton's ring is 1mm and radius of curvature of the lens is 125mm. Calculate the wavelength of light. Ans: $[\lambda = 5.925 \times 10^{-7} \text{ m}]$ (2010)

XI-Physics Chapter# 9, Page# 29

Q.2 If the radius of the 12th dark Newton's ring is 1mm when the light of wavelength 5890A° is used. What is the radius of curvature of the lower surface of the lens used.

(2003 P.E)

Given Data:

Radius of 12th dark ring = r = 1mm = 1 x
$$10^{-3}$$
m
Wavelength of light = λ = 5890 A° = 5890 x 10^{-10} m
No. of ring = m = 12

To Find:

Radius of mth dark ring

$$r = \sqrt{m\lambda R}$$

Squaring both sides

$$r^{2} = m\lambda R$$

$$R = \frac{r^{2}}{m\lambda}$$

$$R = \frac{(1\times10^{-3})^{2}}{12\times5890\times10^{-10}}$$

$$R = \frac{1\times10^{-6}}{7.068\times10^{-6}}$$

$$R = 0.141m \quad Ans.$$

Self test: (18)

Determine wavelength of a monochromatic light used if 12^{th} dark Newton's ring is 1mm. When a Plano convex lens of radius of curvature is 141mm is used.

Ans. [5.91 x 10^{-7} m]

Q.3 Interference fringes were produced by two slits on a screen 0.8m from them when the light of wavelength 5.8 x 10⁻⁷m was used. If the separation between the first and the fifth bright fringes in 2.5mm, Calculate the separation of the two slits.

(1995)

Given Data:

Distance between slits and screen = L =
$$0.8m$$

Wavelength of light = λ = $5.8 \times 10^{-7} \text{m}$
Distance between 1st and 5th bright fringes = Y_m = $2.5 \times 10^{-3} \text{m}$

To Find:

Solution:

$$Y_{m} = Y_{5} - Y_{1}$$

$$Y_{m} = \frac{5L\lambda}{d} - \frac{L\lambda}{d}$$

$$Y_{m} = \frac{4L\lambda}{d}$$

$$2.5 \times 10^{-3} = \frac{4 \times 0.8 \times 5.8 \times 10^{-7}}{d}$$

$$d = 7.424 \times 10^{-4} \text{m}$$
Ans.

XI-Physics Chapter# 9, Page# 30

Self test: (19)

Calculate the wavelength of light, which illuminates two slits 0.5mm apart and produces an interference pattern on a screen placed 200cm away from the slits. The first bright fringe is observed at a distance of 2.40mm from the central bright image.

($\lambda = 0.6 \times 10^{-6} m$)

Q.4 Red light falls normally on a diffraction grating ruled 4000 lines/cm and the second order image is diffracted at 34° from the normal compute the wavelength of red light in A°. (1996)

Given Data:

No. of lines = 4000 Lines
Length of grating = L =
$$1 \text{cm} = 1 \times 10^{-2} \text{m}$$

No. of order = m = 2
 θ = 34°

To Find:

Wavelength of light = λ =

Solution:

Grating element = d =
$$\frac{\text{Length of grating}}{\text{No. of lines}}$$

d = $\frac{1 \times 10^{-2}}{4000}$
d = $2.5 \times 10^{-6} \text{m}$

We know that grating equation

$$m\lambda = d \sin \theta$$

$$\lambda = \frac{d \sin \theta}{m}$$

$$\lambda = \frac{2.5 \times 10^{-6} \sin 34^{\circ}}{2}$$

$$\lambda = \frac{1.397 \times 10^{-6}}{2}$$

$$\lambda = 6.989 \times 10^{-7} \text{m}$$

$$\lambda = 6989 \times 10^{-10} \text{m}$$

$$\lambda = 6989 \times 10^{-10} \text{m}$$

$$\lambda = 6989 \times 10^{-10} \text{m}$$