XI-Physics Chapter# 1, Page# 8

NUMERICAL PROBLEMS

Q.1 Find the area of a rectangular plate having length (21.3 \pm 0.2) cm and width (9.80 \pm 0.10) cm:

SOLUTION:

Area of rectangular plate = Length x width. $A = (21.3 \pm 2) \times (9.80 \pm 0.10)$ $A = (21.3 \times 9.80) \pm (21.3 \times 0.10) \pm (0.20 \times 9.80) \pm (0.2 \times 0.10).$ $= 208.76 \pm 2.13 \pm 1.96$ $= 208.78 \pm 4.09$ $= (208.8 \pm 4.1) \text{ cm}^2.$ $A = (209 + 4) \text{ cm}^2 \text{ Ans.}$

Q.2 Calculate (a) the circumference of a circle of radius 3.5cm and (b) area of a circle of radius 4.65cm:

SOLUTION:

(a) Circumference of circle

 $S = 2\pi r$

 $S = 2 \times 3.141 \times 3.5$

S = 21.99cm Ans.

(b) Area of circle

 $A = \pi r^{2}$ = 3.141 x (4.65)²
= 3.141 x 21.6225 $A = 67.89 \text{cm}^{2} \text{ Ans.}$

Q.4 Find the dimension of 'C' in the equation $S = Ct^3$:

SOLUTION:

The dimension of 'S' is L

The dimension of t is T

Then The dimension of $C = \frac{s}{t^3} = \frac{L}{T^3}$

 $=LT^{-3}$ Ans.

Q.5 Estimate the number of liters of gasoline used by cars in Pakistan each year (consider cars in Pakistan = 500000):

DATA:

No. of cars = $500000 = 5 \times 10^5$ Average distance/year = 16000km Gasoline consumption = 6km/litres No. of litre of gasoline used/year = ?

OLUTION:

Total distance covered by all cars/year = $5 \times 10^5 \times 16000$ = $8 \times 10^9 \text{ km}$

Gasoline consumption = 6km/litres

Gasoline consumption = 1/6 litres

Gasoline consumption = $8 \times 10^9 \text{km} = \frac{1}{6} \times 8 \times 10^9$

Gasoline consumption = 1033×10^9 litres.

XI-Physics Chapter# 1, Page# 9

DIMENSIONS

- Q.1. Deduce the dimension of:
 - (a) Velocity
- (b) Acceleration
- (c) Force
- Displacement Velocity = (a)

Time

Dimension of displacement

Dimension of time

Dimensions of velocity

Dimensions of velocity

Change in velocity **(b)** Acceleration Time

> Dimensions of velocity Dimension of time

Dimensions of acceleration

Dimensions of acceleration

Dimensions of acceleration

c) Force = Mass x Acceleration

Dimension of mass

Dimensions of acceleration

Dimensions of force

Dimensions of force = MLT

SELF TEST:(1)

- Q.2. Deduce the dimension of:
 - (a) Momentum (p = mv)
- (b) Work (W = F d)
- (c) Power (P = F v)

- (d) Weight (w = mg)
- (e) Angular Momentum (L = mvr)

- (f) Torque ($\tau = Fxd$)
- (g) Area
- (h) Volume

- (i) Density
- Q.3. What are the dimensions of gravitational constant 'G' in the formula:

$$F = \frac{G m_1 m_2}{r^2}$$

SOLUTION:

As
$$F = \frac{G m_1 m_2}{r^2}$$

Therefore

Dimensions of 'F' = $M = \frac{L}{T}$

XI-Physics Chapter# 1, Page# 10

Dimension of r' = L

Dimension of ' m_1 ' = M

Dimension of 'm₂' = M Dimensions of 'G' = $\frac{M L/T^2 (L)^2}{M L/T^2 (L)^2}$

Dimensions of 'G' =

Dimensions of 'G' = $\frac{L^3}{MT}$

Dimensions of 'G' = $M^{-1} L^3 T^{-2}$

SELF TEST: (2)

Q.4. What are the dimensions of spring constant "k" in the formula:

F = kx, where F = force & x = displacement

Q.5. What are the dimensions of angular velocity " ω " in the formula:

 $V = r\omega$, where

V = Linear velocity

r = Radius

Q.6. What are the dimensions of angular acceleration " α " in the formula:

 $a = r \alpha$ where

a = linear acceleration

r = radius.

Q.7. Show that the expression $S = V_1 t + \frac{1}{2} at^2$ is dimensionally correct:

SOLUTION:

$$S = V_i t + \frac{1}{2} a t^2$$

$$I H S = S$$

Dimension of S = L

Dimension of L.H.S = 1

$$R.H.S. = V_i t + \frac{1}{2} a t^2$$

Dimensions of V

Dimension of t =

Dimensions of $a = \frac{L}{T^2}$

Dimension of $\frac{1}{2} = \underline{\text{nil}}$

Dimensions of R.H.S. = $\frac{L}{A'} \times A' + \frac{L}{A'^2} \times A'^2$

Dimension of R.H.S. = L + L

Dimension of R.H.S. = 2L

Dimension of R.H.S. = L

Dimension of L.H.S = Dimension of R.H.S.

The equation is dimensionally correct.

Q.8. Show that the following equations are dimensionally correct:

(j)
$$T = 2\pi \sqrt{\frac{m}{k}}$$

(ii)
$$H = \frac{V_0^2 \sin^2 \theta}{2g}$$

L. H. S. = T

XI-Physics Chapter# 1, Page# 11

Dimension of L.H.S = T

R. H. S. =
$$2\pi \sqrt{\frac{m}{k}}$$

 2π is a number having no dimensions.

Dimension of m = M

Dimensions of k =
$$\frac{M}{T^2}$$

Dimensions of R.H.S. = $\sqrt{\frac{M}{T^2}}$

Dimensions of R.H.S. =
$$\sqrt{\frac{MT^2}{M}}$$

Dimensions of R.H.S. = $\sqrt{T^2}$

Dimension of R.H.S. = T

Dimension of L.H.S. =Dimension of R.H.S.

The equation is dimensionally correct.

(ii)
$$H = \frac{V_0^2 \sin^{-2}\theta}{2g}$$

L.H.S. = H (Height)

Dimension of H = L

Dimension of L.H.S. = L

R. H. S. =
$$\frac{V_o^2 \sin^2 \theta}{2g}$$

 $Sin^2\theta$ is a number having no dimens

Dimensions of
$$V_0 = \frac{L}{T}$$

Dimensions of
$$g = \frac{L}{T^2}$$

Dimensions of R.H.S = $\frac{\left(\frac{L}{T}\right)^2}{L}$

Dimensions of R.H.S =
$$\frac{\frac{L^2}{T^2}}{\frac{L}{T^2}}$$

Dimension of R.H.S = L

Dimension of L.H.S = Dimension of R.H.S.

The equation is dimensionally correct.

SELF TEST:(3)

Q.9. Show that the expression $V_f = V_i + at$ is dimensionally correct.

Q.10. Show that the expression $T = 2\pi \sqrt{\frac{1}{g}}$ is dimensionally correct.

Q.11. Show that the following equations are dimensionally correct.

(i)
$$V = \lambda f$$
 (ii) $T = \frac{2V_0 \sin \theta}{g}$

Where $V_0 = Initail \ Velocity \ g = Acceleration due to gravity$