PRACTICAL CENTRE (KARACHI) VISIT US AT HTTP://WWW.PHYCITY.COM

XI-Physics Chapter# 6, Page# 20

MULTIPLE CHOICE QUESTIONS (MCQs)

(1)	The time period of	Moon around the	e earth_is:		[2003]
	* 29 days	* 30 days	27.3 days	* 28.29 days	-
(2)	If the distance between	een two masses is	doubled the gravitati	onal force betwe	en them is:
	* One third	ne fourth	* Two time	* Three time	
(3)	G is called:		2 0		
4.5	Gravitational con	stant	* Gravitational a	cceleration	-
1	* Force of Gravitati		* Gravitational r		ļ. a.
(4)	In S.I unit the valu		Giavitationari	caction	
. /	6.673 x 10 ⁻¹¹ Nm		* 7.67 x 10 ⁻¹¹ No	$m^2/k\alpha^2$	
	* $8.67 \times 10^{-11} \text{ Nm}^2$	ka^2	* $7.67 \times 10^{-11} \text{ N}_{\odot}$ * $9.67 \times 10^{-11} \text{ N}_{\odot}$	$m^2/l_{\rm rg}^2$	
(5)		ng ka ahisat at tha ac	entre of the Moon wi	III /Kg	
(5)	* 588N	* 98N		Zero	1300 C E1
(6)			* 60N	Zero	[2006 F]
(0)	The mass of the ea		te by the relation:	~ (O)	
956	* Reg	$\frac{Re^2g}{G}$	* Reg	* Re gr	
(7)	G	•	J	G	
(7)	The average densi	ty of the earth is e	quai io.	_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3
(0)	* 2500 kg/m	*,5000 kg/m	3500 kg/m ³	* 5600 kg/m	3
(8)	The force of gravit	ation between two	bodies 1m apart and	deach of 1000kg	is:
4	* 6.67 x 10 ⁻¹¹ N	* $6.67 \times 10^{5} \text{N}$	6.67 x 10 ⁻⁵ N	* 6.67 x 10 ⁻⁶	'n
(9)	The mass of the ea	rth comes out to b	oe:		
	$6.67 \times 10^{13} \text{kg}$	$*6.025 \times 10^{23} \text{kg}$	g * 1.6 x 10 ¹⁹ kg	$*6 \times 10^{24} \text{kg}$	
			tion between two bo	dies is equal to:	
	* $G \frac{m_1 m_2}{r}$	$G \frac{m_1 m_2}{r^2}$	$m_1 m_2$	* g $\frac{m_1 m_2}{r^2}$	
				I	
(11)	The acceleration d	ue to gravity on tl	ne surface of earth c	an be calculated	as:
	$G\frac{Me}{Re^2}$	$*G^{Me^2}$	* $G\frac{Me^2}{Re}$	Me Me	
(12)	The value of "g" a	t height "h" from	the surface of the ea	rth is equal to:	
	$g - \frac{2gh}{R}$	* $g + \frac{2gh}{Re}$	* a _ gh	* $g - \frac{gh}{Ra^2}$	
•	Re		. 100	VC.	
(13)	If a man goes to a	height equal to	the radius the earth	from its surfac	e his weight
	relative to that of	earth would becon	ies:		[2011]
	* W/2	∨ * W	* 2W	₩/4	
(14)	If the radius of th	e earth were to sl	rink and its mass v	vere to remain	the same the
			rface of the earth wi		
	* Decrease			* None of the	
(15)	Above the surface	of earth if we go to	o a distance equal to	double earth ra	dius:
					[2007 F]
		One-third	* One-fourth	*One-half	
(16)	The ocean tides are	e caused by gravit	ational force exerted	l on earth by:	[2005]
	* Moon only		* Sun only	•	
	Both the Sun and	d the Moon	* Jupiter only		And the
(17)	If we go up from the surface of the earth to a distance equal to the radius of the				
	earth the value of g	will be:	[2008 S, 200	08, 2007 S, 2005	F, 2009]
	* $\frac{1}{2}$ g	$\sqrt{\frac{1}{4}}g$			
	~	-	* 2g	* 2g	
(18)	The value of g at th	e centre of the ear	th is:	$\gamma_{ij} = C_{ij}^{(i)}$	
1	Zero	$*9.80 \text{ m/s}^2$	$*9.81 \text{ m/s}^2$	$*4.9 \text{ m/s}^2$	

PRACTICAL CENTRE (KARACHI) VISIT US AT HTTP://WWW.PHYCITY.COM

PRACTICAL CENTRE (KARACHI) VISIT US AT HTTP://WWW.PHYCITY.COM

XI-Physics Chapter# 6, Page# 22

ANSWER KEY

1. 27.3 days	2 0- 5 4
	2. One-fourth
3. Gravitational constant	4. $6.673 \times 10^{-11} \text{Nm}^2/\text{kg}^2$
5. Zero	$6. \frac{Re^2g}{G}$
7. 5500 kg/m ³	8. 6.67 x 10 ⁻⁵ N
9. 6 x 10 ²⁴ kg	$\begin{array}{ c c c } \hline \textbf{10.} & G & \frac{m_1 m_2}{r^2} & & & & \\ \hline \end{array}$
11. $G \frac{Me}{Re^2}$	12. $g - \frac{2gh}{Re}$
13. W/4	14. Increase
15. One-ninth	16. Both Sun and Moon
17. ¼ g	18. Zero
19. Re/2	20. Become four time large
21. 2g	22. Decreases
23. Zero	$24. \ \upsilon = \frac{1}{2\pi} \sqrt{g/R}$
25. Increase	26. Decrease
27. $g - \frac{gx}{Re}$	28. Zero
29. Less than its weight on the surface of the earth	30. Over come the state of weight lessness
31. Increased	32. Zero
33. m	