PRACTICAL CENTRE (KARACHI) VISIT US AT HTTP://WWW.PHYCITY.COM

XI-Physics Chapter-4 Problems, Page# 28

MULTIPLE CHOICE QUESTIONS (MCQs):

(1)	Body thrown at some angle θ above or below the horizontal gravity is called:	and moves freely under the action of			
-,					
(2)		* Projectile			
(~)	r - g to dutted its:				
(3)	Time of action # ()[iii	* Trajectory			
(~)					
(4)		* Circle			
(-)	V. Sinθ V. Con				
	$ * t = \frac{V_0 \sin \theta}{g} $	$\star t = \frac{2V_0 \sin \theta}{1 + 1}$			
(5)	The maximum builth attained in	g			
(3)	The maximum height attained by a projectile is:				
	* $H = \frac{V_0 \cdot \sin \theta}{\theta}$	$* H = \frac{V_o^2 \sin \theta}{1 + \frac{1}{2} \sin \theta}$			
(6)	The basis of 2g 2g	2 g			
(6)					
	* $R = \frac{V_o^2 \sin^2 \theta}{2g}$	$\frac{\theta}{\theta} = \frac{V_0^3 \cos^2 \theta}{\cos^2 \theta}$			
(7)	The total time taken by a projectile from station and	g			
V. J.	is given by:				
	* $T = \frac{V_o \sin \theta}{2g}$	9 2V Sin ²			
	$ T = \frac{1}{2g} $ $ T = \frac{1}{2g} $	$* T = \frac{2 \sqrt{3} m}{2 \alpha}$			
(8)	Due to presence of air resistance the total time of flight of a p	rojectila:			
	* Remains the same * Decreases * Becomes zer	o * Increases			
(9)	A projectile is fired with initial velocity of 90m/s to hit a	ground level target its maximum			
	horizontal range will be:	. Ground lever target its maximum			
	* 9.2m	* 81m			
(10)	In projectile motion a body moves with:				
7, 4	* Constant vertical component of velocity * Constant hor	izontal component of velocity			
	* Both Changing horizontal and vertical component of velocit	V			
	* Vertical component changing but Horizontal component of	velocity constant			
(11)	If a projectile is launched at 45° with velocity 100m/s it his	the target. It will have double the			
	range if its velocity is:				
(13)	* 141.4m/s	* 400m/s			
(14)	of 1 if a projectile is thrown at an angle of 35° it hit a centruin ta	rget. It will have the same range if			
5	it is thrown at an angre of.				
(13)	* 45°	1 - 1 * 70°			
). <i>1</i> .	* Angle of projection * Velocity of projection * Both angle				
(14)	During the projectile motion the acceleration along the horizon	and velocity * None of these			
	* Decreases * Is zero * Increases	* None of these			
(15)	The projectile motion is a superposition of:	Trone of these			
	* Circular motion * One diomentional motion * SHM	* None of these			
(16)	A projectile which is fired horizontally has its speed maximum	at the moment of			
	* Projection * Hitting the ground * Both of these	* None of these			
(17)	The range of a projectile is maximum when the factor Sin 20 is	s equal:			
	*1 1 45	* 90			
18)	An angle subtending at its centre by an arc whose length is equ	al to its radius is:			
10	* 37.3°	* 67.3°			
17)	Two projectiles A and B are thrown up with the some sprespectively with the horizontal then:	peed at an angle of 60° and 30°			
	* The range of A and R will be some	B will be greater			
20)	* The range of A and B will be same * The range index In a projectile motion the velocity with remains the same is:	ependent of the angle			
,	* Velocity				
21)	An aircraft takes off at 30° with 500km/h it vertial component	of velocity with			
	* 500 km/h	* Zero			
	Z. J. Kill / II	- 20,0			

PRACTICAL CENTRE (KARACHI) VISIT US AT HTTP://WWW.PHYCITY.COM

		XI-Physics (Chapter-4 Problems, Page# 29			
(22)	A projectile must be Launched to maximum re * 60°	ange at an angle of: * 30°	* 9()°			
(23)	Circular motion is an example of motion in: * One dimension					
(24)	In uniform circular motion, the acceleration is * The centre	* Three dimension always directed: * The tangent	* No dimension			
(25)	* Between the these tangent and the normal. The number of radians in a complete circle is:	* None of these				
(26)	* 360 * 180 The relation between time period end angular	*π	* 2π			
(=0)	3	* $\omega = \frac{J}{2\pi}$	$*\omega = \frac{2T}{}$			
(27)	If 'r' is the radius of the circular path of a parti					
(28)	The centripetal acceleration of a body moving		* W=1 X V			
	* $\frac{4\text{Tr}^2}{\pi^2}$ * $\frac{4\pi^2 r}{T^2}$	$*\frac{4r^2T^2}{\pi^2}$	* $\frac{4\pi^2}{(2r)}$			
(29)	A body is moving along a circle with an increa * Tangential acceleration only (at)	sing speed it possess	es:			
٠,	* Both tangential and centripetal acceleration	* Centripetal acceler * No acceleration	4			
(30)	The angle between centripetal acceleration and	tangential accelerati	on is:			
	* 0°	* 180°	* 45°			
(31)	•	* 57.3°	* 0.017°			
(32)	S.I unit of angular velocity is:	1.1.				
(33)	* m/see	* Deg/see	* Rev./see			
	* Linear velocity	on * Both	* None of these			
(34)	If r is the radius of the circular path of a particle	e its linear acceleration	on $(\vec{\infty})$ are related by:			
•	$* \vec{a} = \vec{\infty} \times \vec{r} \qquad * \vec{a} = \vec{r} \times \vec{\infty}$	* ∝=ā x r	$* \bar{\infty} = \bar{a} \times \bar{r}$			
(35)	The length of an arc subtending one radian at the		f radius 0.5m is:			
(36)	* 0.05m	* 1 m	* 0.15m			
(30)		 Creasing speed posse Centripetal accelera 				
	* Both tangential and centripetal acceleration	* No acceleration	•			
(37)	If a body is rotating in a circle with a certain co	nstant tangential spec	ed it must have:			
	* Only centripetal acceleration	* Only tangential acc	eleration			
(38)	* Both centripetal and tangential acceleration * None of these if a body is moving is a circle of radius "y" with the constant speed "V" the centripetal acceleration.					
	V V^2	V	V ²			
	* 7	$\frac{1}{\gamma^2}$	$*\frac{1}{\gamma^2}$			
(39)	Centripetal force is also called:					
(40)	* Centrifugal force	* Tangential force on is called:	* None of these			
(44)	* Orbital force	Centrifugal force	* Restoring force			
(41)	What is the centrifugal force acting on a mass rotated at a speed of 1m/sec.	of 20kg tied to one	end of a sting 10m long and			
(d2)		5N	* 10N			
42)	A cyclist cycling around a circular racing track : * The centripetal force upon him is less than the	skids because:				
	* The centripetal force upon him is greater than	the limiting friction				
	* The centripetal force upon him is equal to the	limiting friction	* None of these			
43)	When angular velocity of a disk increases angular a	cceleration α and ang	ular velocity ω are.			
	* parallel * Not parallel *	perpendicular	* None			
44)	If the axis of rotation of a rotating body passes thro * Linear motion * Orbital motion *	ough the body itself, the	hen its motion is called:			
	Total monon	Spin motion	* S.H motion			

PRACTICAL CENTRE (KARACHI) VISIT US AT HTTP://WWW.PHYCITY.COM

XI-Physics Chapter-4 Problems, Page# 30

ANSWER KEY

(1) Projectile	(2) Trajectory	(3) Parabola	$(4) t = \frac{V_0 \sin \theta}{g}$
$(5) H = \frac{V_o^2 \sin^3 \theta}{2g}$	$6) R = \frac{V_o^2 \sin 2\theta}{g}$	$(7) T = \frac{2V_o \sin \theta}{g}$	(8) Decreases
(9) 826.5m	(10) vertical component changing but Horizontal component of velocity constant	(11)141.4m/s	(12) 55°
(13) Both angle and velocity	(14) Is zero	(15) None of these	(16) Both of these
(17) 1	(18) 57.3°	(19) The range of A and B will be same	(20) Horizontal velocity
(21) 250 km /h	(22) 45°	(23) Two dimension	(24) The centre
(25) 2π	$(26) \ \omega = \frac{2\pi}{T}$	(27) $\vec{\mathbf{v}} = \vec{\mathbf{w}} \times \vec{\mathbf{r}}$	$(28) \frac{4\pi^2 r}{T^2}$
(29) Both tangential and centripetal acceleration	(30) 90°	(31) 57.3°	(32) Radian/see
(33) Linear velocity	$(34) \ \overline{a} = \overline{\alpha} \times \overline{r}$	(35) 0.5m	(36) Both tangential and centripetal acceleration
(37) Only centripetal acceleration	$(38) \frac{V^2}{r}$	(39) Centre-Seeking Force	(40) Centripetal force
(41) 2N	(42)	(43) parallel	(44) Spin motion