MULTIPLE CHOICE QUESTIONS (MCQs)

 (1) The change of position of a body in a particular direction is called its: * Displacement * Velocity * Speed * Acceleration (2) The shortest distance between two points covered along a straight line is called: * Speed * Displacement * Velocity * Acceleration (3) The S.I unit of displacement is: * Metre * Foot * Centimeter * All of these Velocity: (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity * Non-Uniform Velocity * Uniform Velocity * Average Velocity * Uniform Velocity * Uniform Velocity * Uniform Velocity * Uniform Velocity * Average Velocity * Uniform Velocity * Uniform Velocity * Uniform Velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 	Displ	acement:	
 (2) The shortest distance between two points covered along a straight line is called: * Speed * Displacement * Velocity	(1)	The change of position of a body in a par	
* Speed * Displacement * Velocity * Acceleration (3) The S.I unit of displacement is: * Metre * Foot * Centimeter * All of these Velocity: (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity * Average Velocity * Average Velocity * Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Constant acceleration * Variable acceleration * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to:		* Displacement * Velocity	* Speed * Acceleration
 (3) The S.I unit of displacement is: * Metre * Foot * Centimeter * All of these Velocity: (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 	(2)	The shortest distance between two points	s covered along a straight line is called:
* Metre * Foot * Centimeter * All of these Velocity: (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity (8) The average and instantaneous velocities will be equal when a body moves with: [2008 F] * Uniform velocity * Constant acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to:		* Speed * Displacement	* Velocity * Acceleration
* Metre * Foot * Centimeter * All of these Velocity: (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity (8) The average and instantaneous velocities will be equal when a body moves with: [2008 F] * Uniform velocity * Constant acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to:	(3)	The S.I unit of displacement is:	
 (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity * Non-Uniform Velocity * Average Velocity * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 			* Centimeter * All of these
 (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity * Non-Uniform Velocity * Average Velocity * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 	Velo	city:	
* Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity (8) The average and instantaneous velocities will be equal when a body moves with: * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If \$\Delta r\$ is the change in the position of body during time \$\Delta t\$, then its velocity is equal to:		•	
* Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to:		* Motion * Velocity	* Speed * Acceleration
* Speed * Acceleration * Velocity * Retardation The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to:	(5)	The rate of change of displacement is cal	lled:
 its: * Uniform Velocity * Average Velocity * Non-Uniform Velocity (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity (8) The average and instantaneous velocities will be equal when a body moves with: [2008 F] * Uniform velocity * Constant acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: The distribution * Acceleration 		* Speed * Acceleration	* Velocity * Retardation
 its: * Uniform Velocity * Average Velocity * Non-Uniform Velocity (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity (8) The average and instantaneous velocities will be equal when a body moves with: [2008 F] * Uniform velocity * Constant acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: The distribution * Acceleration 	(6)	The total change of displacement divide	d by the total change in time of a body is called
 * Average Velocity	, .		
 (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity		* Uniform Velocity	* Instantaneous Velocity
 * Non-Uniform Velocity * Uniform Velocity * Instantaneous Velocity (8) The average and instantaneous velocities will be equal when a body moves with: [2008 F] * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 		* Average Velocity	* Non-Uniform Velocity
 * Uniform Velocity	(7)	The change of displacement in a very sm	all interval of time of a body is called its:
 (8) The average and instantaneous velocities will be equal when a body moves with: [2008 F] * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 11		* Non-Uniform Velocity	* Average Velocity
 * Uniform velocity * Constant acceleration *Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 		* Uniform Velocity	* Instantaneous Velocity
 * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 	(8)	The average and instantaneous velocities	will be equal when a body moves with:
*Variable acceleration	14 14 14 14 14 14 14 14 14 14 14 14 14 1		[2008 F]
 (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 		* Uniform velocity	* Constant acceleration
* Acceleration * Speed * Distance * Retardation (10) If $\overline{\Delta r}$ is the change in the position of body during time Δt , then its velocity is equal to:		*Variable acceleration	* Retardation
(10) If $\frac{\Delta r}{\Delta t}$ is the change in the position of body during time Δt , then its velocity is equal to:	(9)	The magnitude of velocity is called:	
		* Acceleration * Speed	* Distance * Retardation
	(10)	If Δr is the change in the position of body	during time Δt , then its velocity is equal to:
ΛV ΛV		$\overline{\Delta V}$ $\overline{\Delta P}$	
* *		*	
	(11)		2.
(11) A boy goes from 2 m to 12m mark and back to 10m mark in 3 second its average speed is: [2003 P.M]	(11)		
speed is: [2003 P.M] * 2 m/s		•	

XI-Physics Chapter# 3, Page# 38 A particle of mass 0.5gm moving along x - aixs is located at $x_1 = 15m$ at $T_1 = 5Sec$ and at $x_2 = 33$ m at 13sec. Its velocity is: * 2.45m/Sec * 6m/Sec * 4.45m/Sec * 2.25m/Sec (13) If the distance-time graph of a moving body is a straight line, the body moves with: * Uniform velocity * Uniform acceleration * Non-uniform acceleration * Average velocity (14) If the distance – time graph of a moving body is a curve, the body moves with: * Uniform velocity * Average velocity * Uniform Acceleration * Variable velocity (15)The S.I unit of velocity is: * Foot/Second + * Meter/Second * Centimeter/Second * All of these (16) The dimension of velocity is: Acceleration: (17)The change in velocity per unit time is called: * Uniform velocity * Acceleration * Retardation (18) If the velocity of a body increases by equal amounts in equal intervals of time it is said to have: * Uniform acceleration * variable acceleration * Average acceleration * Instantaneous acceleration (19) The acceleration of a body in a very small interval of time (time tends to zero) is called: * Average acceleration * Uniform acceleration * Variable acceleration * Instantaneous acceleration (20)When the value of average and instantaneous acceleration are equal the body is said to be moving with: * Average acceleration * Uniform acceleration * Instantaneous acceleration * Variable acceleration (21) The rate of increase of velocity is called: * Negative Acceleration * Final velocity * Average velocity * Positive Acceleration (22)The decrease in velocity per unit time is called: * Initial velocity * Final velocity * Average velocity * Retardation The S.I unit of acceleration is: (23) $* m/s^2$ * Foot /s² * cm/s² * All of these (24)The dimensions of acceleration is: $*LT^2$ * LT-1 * LT-2 If the velocity time graph of a moving body is a curve, the body moves with: [2005] * Constant speed * Constant velocity * Constant Acceleration * Changing Acceleration (26) The acceleration of body moving with uniform velocity is: * Zero * Not Zero * Uniform * Variable (27) What is the average acceleration if a car moves 20m/s to 50m/s in 15 Sec? $* 1 \text{ m/s}^2$ $*2 \text{ m/s}^2$ $* 3 \text{ m/s}^2$ $*4 \text{ m/s}^2$ If a car is moving with uniform acceleration of 2m/sec², then in 4 seconds its velocity (28) increases from 10m/sec. to: * 18 m/sec * 28 m/sec * 38m/sec (29) A body starting from rest covers a distance of 0.45km and acquired a velocity of 300km/hr. Its acceleration will be: $* 0.092 \text{ m/sec}^2$ $*0.5 \text{ m/sec}^2$

* 7.71 m/sec^2

 $* 0.15 \text{ m/sec}^2$

XI-Physics Chapter# 3, Page# 39

Equ	ations of Motioa:		
(30)	Which one is the correct equation to	calculate time "t"	when "vi", "vf" and "a" have
	their usual meaning:		[2008 F]
	$* t = \frac{V_i + a}{A} \qquad * t = \frac{V_i + a}{A}$	$\psi_i = V_i - V_i$	$v_f + v_i$
	$* t = \frac{\mathbf{v}_t + \mathbf{a}}{\mathbf{v}_t} \qquad * t = \frac{\mathbf{v}_t + \mathbf{a}}{\mathbf{v}_f}$	a	a
(31)	Which one is the correct equation to a		
	usual meaning:	100	[2009 F]
		$v^2 - v^2$	· · · · · · · · · · · · · · · · · · ·
	* $a = \frac{v_f^2 + v_i^2}{S}$	* a = -1-1-2S	$* a = \frac{1}{2}$
(32)	The distance covered by a body in tim	e t starting from rest	15.
()			the second secon
	$*\frac{1}{3}at^2$ * V t	$*\frac{1}{2}at^{2}$	* at ²
na ar a	3	2	
	ion Under Gravity:	1 11	
(33)	The force which attracts a body toward		
(34)	* Mass	* Density	* Acceleration
(34)	How much height does a freely falling	, body of mass to kg	12003 P.M. 2006 C 20061
	* 9.8	* 49 m	[2003 P.M, 2005 S,2006] * 4.9 m
(35)	A lkg stone when falling freely from	om a height of 10m	strike the ground with the
` '	velocity of:		[2002 P.M, 2006 F]
		* 98 m/s	* 196 m/s
(36)	A body is thrown vertically upward with	an initial velocity 9.8	m/s. It will attain a height:
	* 9.8 m	* 4.9 m	* 29.4 m
(37)	How many metre will a 20kg ball, start	ing from rest, fall fre	ely in one second:
	* 19.6m	* 4.0m	* 4.9m
(38)			[2007 S]
(BA)	*5N *9.8N	* 19.6 N	* Zero
(39)			
Low	* 20 N 196 N	* 19.6 N	* 1960 N
цауу: (40)	of Motion: The Laws of motion show the relation	hatroom	
(40)			
5.5	* Mass and acceleration	* Mass and veloci	
(41)	Newton's First law of motion is also ki	* Force and accele	
(**)	* Law of Power	* Law of Inertia	[2009 F]
	* Law of Action and Reaction	* Law of Force	
(42)	Inertia of a body is measured in terms of	of:	
, ,		* Its velocity	* Its reaction
(43)	When a constant force is applied on a body		iform: [2008 F]
	* Velocity * Speed	* Acceleration	* Momentum
44)	Swimming is possible because of which	h law of motion:	
198	* First * Second	* Third	* All of these
45)	It is true that: $*a = mF$ $*a =$	v	D
43)	It is true that: $*a = mF$ $*a =$	= 	$=\frac{1}{m}$ * $a=\frac{m}{F}$
46)	If F is kept constant and m is doubled, t	hen acceleration is:	
	* One-fourth * One-half	* One-third	* One-ninth
47)	The unit of tension in C.G.S system is:		[2007 S]
~ :··	* Joule * Energy	* dyne	* Foot-Pound
48)	Dyne is the unit of:		[2009 F]
	* Angular Acceleration	* Acceleration	
	* Displacement	* Force	
	*		

					m
				hysics Chapter# 3,	Page# 40
(49)	A helicopter of mass What resultant force * Zero * 3 × 10 ⁴ N upward	e acts on the helicopt * 3 ×			002 P.E]
(50)	A stone has mass 10	00 gm: Its weight wil		00000 X!	
(51)	* 9800 N A mass of 5 kg mov	* 0.98 N es with an accelerati	* 0.0980 N fon of 10 m/s ² force	* 98000 IN on it is:	
	* 10 N	* 50 N	* 2 N	* 15 N	
(52)	Newton is the force v	vhich produces an acc	celeration of 1 m/sec ² i	n a body of mass:	
	$*\frac{1}{2}$ Kg		* 2 Kg	- -	
(53)	A helicopter weight the helicopter is:	- 7			
	* 4720 N	* 3920 N	* 3924 N	* 3916 N	[2012]
	on of Bodies conne		, i		lay Thair
(54)	acceleration is given	n by the formula:	' are hanging vertice		iey. Then
	* $a = \left(\frac{m + m_2}{m_1 + m_2}\right) g$	* $a = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)g$	* $a = \frac{2m_1m_2}{m_1 + m_2}g$	$* a = \frac{m_1 g}{m_1 + m_2}$	
(55)	Two bodies of mas given by the formul		nanging vertically ov	ver a pulley. The	tension is
			$* T = \frac{m_2 g}{m_1 + m_2}$	* $T = \frac{2m_1m_2g}{m_1 + m_2}$	
(56)	The force applied or		1 7 7		
		* Momentum	* Tension	* Torque	
(57)	The S.I unit of tensi * Watt		* Newton	* Dyne	
(58)		sion in a string will a		5,	
	* Same direction of		* opposite direction	of applied force	
(59)	* Both of these)ka is suspended by	* None of these a string, the tension	n produced in th	e string is
	$(g = 10 \text{ m/s}^2)$:	okg is suspended by	a string, the tensio	n produced in th	c string is
4 Sept 2	- 10	* 18 N	* 9.8 N	* 980 N	•
Mom	entum and law of		Iomentum:		
(60)	The product of mass	s of a particle and its	velocity is called:		and the second
(61) ¹	* Force The S.I unit of linea	* Acceleration r momentum is:	* Momentum	*Angular mome [2003 P.E, 2004, 2	
	* N/s	* N-s	* J/s	* N·m	
(62)	•	_		·	
((2)	* Thrust	* Torque	* Moment	* Momentum	
(63)	* 200 N.s	s on a body for 10 sec * 800 N.s	cond what will be the * 5 N:s	* 500 N.s	entum:
(64)		ording to the law of			
	* Mass	* Energy	* Momentum	* Force	
(65)			n moves backward w		
	* Velocity equal to t		* Velocity less than	that of the bullet	· ·
(66)		nan that of the bullet cts on a body for a ve	* Remains at rest ery short time, then in	mpulse will be:	

XI-Physics Chapter# 3, Page# 41

	stic comision:	
(67)		[2001, 2003, P.E, 2005 S, 2008]
	* Both momentum and K. E are conserve	
	* Neither momentum nor K. E is conserv	ed
	* Only momentum is conserved	* Only K. E is conserved
(68)	In an inelastic collision of two bodies:	
	* K E is conserved only	* Momentum is conserved only
	* Both K E and momentum are conserved	* None of these
(69)	When two balls collide and as a result ter	mperature changes, which one of the following
	law is conserved?	
	* Velocity	
(70)	The velocity of a body after elastic collision	n with a body of the same mass at rest will be:
		[2006 F]
(21)	* Reduced to half * Doubled	
(71)	will:	a massive body which is at rest, light object
		* be stopped
	* rebound with twice the velocity	
(72)		y have equal momentum, Which of them has
()	greater velocity:	, and a final has
		* The heavy ball
•		* Depends upon the direction of momentum
Frict	tion:	
(73)		
		* Kinetic friction * All of these
(74)	- 1	
	* Always less than the kinetic friction	
	* Always greater than kinetic friction	1000000000000000000000000000000000000
	* Equal to kinetic friction	a though a lain said Called
(75)	* Sometime smaller and sometime greater The correct relation of μ is:	
(75)	The correct relation of μ is.	[2005 F]
	* $\mu = R/f$ * $\mu = f/R$	
(76)	When a body slides over a surface, the	kinetic friction (fk) and static friction (fs) are
r	related:	[2003 P.E]
(77)		* (k = 0)
(77)		
(78)		* Less than one * Greater than one periences a frictional force which is given by:
(70)	A body failing down through a field exp	[2009 F, 2012]
	* Law of gravitation * Snell's law	* Stoke's law * None of these
(79)	The Property of fluids due to which they r	esist their flow is called:
		* Velocity * Co-efficient of friction
(80)	Stoke's law holds good for:	[2009]
	* The bodies of all shapes	Motion through non-viscous medium
	* Motion through vacuum	Motion through viscous medium
(81)	Equation $F = 6 \pi \eta r v$ represents: [2009]	P.E, 2002 P.M, 2003 F, 2006, 2007]
		Bragg's Law * Newton's Law
(82)	Which of the following is the mathematica	
(02)		$F = 6 \pi v \qquad *F = 6 \pi \eta r v$
(83)	The unit of coefficient of friction in S.I un	
	* Newton * Dyne *	joule * None of these (No unit)

Inclined Plane:

The acceleration of a body on a smooth inclined plane depends upon: * Mass of a body * Weight of a body * Reaction of the plane* Angle of inclination

(85)When a body moves up a rough inclined plane, it is acted upon by:

A body is moving up a frictionless inclined plane surface at an angle of 45°. Its (86).[2005 S] * - 3.46 m/s² acceleration is given by:

 $*-6.93 \text{ m/s}^2$ $*3.46 \text{ m/s}^2$ * 6.93 m/s^2

(87) The acceleration of a body moving down a frictionless inclined plane at 30° will be: [2001, 2004]

 $*4.9 \text{ m/s}^2$

* 9.8 m/s²

* 980 m/s²

* 98 m/s²

ANSWER KEY

1. Displacement	2. Displacement	3. Meter
4. Speed	5. Velocity	6. Average Velocity
7. Instantaneous	8. Uniform Velocity	9. Speed
10. $\frac{\overline{\Delta r}}{\Delta t}$	11. 4 m/s	12.
13. Uniform Velocity	14. Variable Velocity	15. Meter / Second
16. LT ⁻¹	17. Acceleration	18. Uniform Acceleration
19. Instantaneous Acceleration	20. Uniform Acceleration	21. Positive Acceleration
22. Retardation	23. m/s ²	24. LT ⁻²
25. Changing Acceleration	26. Zero	27. 2 m/s ²
28. 18 m/s	29. 0.092 m/s ²	30. $t = \frac{v_f + v_j}{a}$
31. $a = \frac{v_i^2 + v_i^2}{2S}$	32. $\frac{1}{2}$ a t ²	33. Weight
34. 19.6m	35. 14 m/s	36. 4.9 m
37. 4.9 m	38. Zero	39. 196 N
40. Force and acceleration	41. Law of inertial	42. Its mass
43. Acceleration	44. Third	45. a = F/m
46. one-half	47. Dyne	48. Force
49. Zero	50. 0.98 N	51. 50 N
52. 1 Kg	53. 3920 N	$54. a = \left(\frac{m_1 - m_2}{m_1 - m_2}\right)g$
55. $T = \frac{2 m_1 m_2 g}{m_1 + m_2}$	56. Tension	57. Newton
58. Opposite direction of applied force	59. 100 N	60. Momentum
61. N.S	62. Momentum	63. 500 N.S
64. Momentum	65. Velocity less then that of the Bullet	66. FΔt
67. Both momentum and K.E are conserved	68. Momentum conserved only	69. Momentum
70. Zero	71. rebound with the same velocity	72. The light ball
73. All of these	74. Always greater then kinetic Friction	75. $\mu = f/R$
76. fk < fs	77. Less than one	78. Stoke's law
79. Velocity	80. Motion through viscous Medium	81. Stoke's law
82. F = 6 π η r v	83. None of these (No unit)	84. Angle of inclination
85. Four forces	86. -6.93 m/s^2	87. 4.9 m/S ²