XI-Physics Chapter# 9, Page# 31

MULTIPLE CHOICE QUESTIONS (MCQs):

(1)	The particle theory of light was p	roposed by:	
	* Maxwell	* Newton	
	* Huygen	* Fresnel	
(2)	The wave theory of light was prop	posed by:	
	* Maxwell	* Newton	
	* Huygen	* Hertz	
(3)	The electromagnetic wave theory	was proposed by:	
	* Maxwell	* Newton	
	* Huygen	* Einstein	
(4)	Einstein in 1905, suggested that	light travels from one place to another in	
	the form of:		
	* Particles	* Waves	
	* Radiations	* Photons	
(5)	The present idea about the nature	e of light is that it has:	
i,	* Particle nature only	* Wave nature only	
	* Dual nature	* Spherical wave nature	
(6)	Point source of light in a homoger	neous medium give rise to:	
	* Plane wave front	* Cylindrical wave front	
	* Spherical wave front	* Elliptical wave front	
(7)	At a very large distance from the	point source, we get:	
	* Plane wave front	* Cylindrical wave front	
	* Spherical wave front	* Elliptical wave front	
(8)	The angle made by the light ray with wave front is:		
	* 0°	* 45°	
	* 90°	* 100°	

XI-Physics Chapter# 9, Page# 32 The phase change of 180° is equivalent to a path difference of: * $\lambda/2$ * \(\lambda\) $*3\lambda/2$ * 2\lambda The energy contained in a Photon of frequency v is: *E = ho*E = 2hvThe locus of all points in the same phase of vibration is called * Wave length * Wave front * Wave form * Wave number (12) For constructive interference, the path difference is given by: * $(m - \frac{1}{2})\lambda$ * mλ (13) For destructive interference, the path difference is given by: * $(m - \frac{1}{2})\lambda$ * $(m + \frac{1}{2})\lambda$ * mλ (14) Diffraction of light is a special type of: * Reflection * Refraction * Interference * Polarization (15) In Michelson interferometer, Semi silvered Plate is used to obtain: * Dispersion * Phase coherence * Monochromatic light * Un polarzed ligh (16) Which of the following is not an electromagnetic wave? * X- rays * Radio wave * Ultra-violet rays * γ -rays

XI-Physics Chapter# 9, Page# 33

(17)	The condition for interference in Thin film is reversed because of:		
	* Small thickness of film	* Refraction	
	* Phase reversal	* None of these	
(18)	Which of the following exhibits the transverse nature of light waves?		
	* Interference	* Polarization	
	* Diffraction	* Refraction	
(19)	Which of the following equations	represent the Bragg's Law:	
	$* m \lambda = d \sin \theta$	* m $\lambda = d \sin^{\theta}/2$	
	* $2 \text{ m } \lambda = d \sin \theta$	* $2 \operatorname{d} \sin \theta = m \lambda$	
(20)	The characteristics property of light	ht which does not change with the medium is:	
	* Frequency	* Wave length	
	* Velocity	* Amplitude	
(21)	Light possesses:	1.1/2	
	* Transverse nature	* Electromagnetic character	
	* Dual nature	* All of these	
(22)	The number of lines ruled per centimeter on a diffraction grating is 4000		
	Its grating element is:		
	$*2.5 \times 10^{-4} \mathrm{m}$	$*2.5 \times 10^{-6} \mathrm{m}$	
	$*4\times10^3\mathrm{m}$	$*4 \times 10^{-3} \mathrm{m}$	
(23)	(23) In thin film, destructive interference is:		
	* An odd multiple of half wave len	gth * Half wave length	
· ·	* Only an even multiple of wave le	ength * An integral multiple of wave length	
(24)	Electromagnetic wave consists o	f oscillatory electric field and magnetic field	
	both are:		
	* Parallel to each other	* Parallel to direction of propagation	
	* Perpendicular to each other	* None of these	

XI-Physics Chapter# 9, Page# 34 (25) A monochromatic beam of light is entering from one medium into another. The property which remain unchanged is: * Amplitude * Velocity * Frequency * Wave length (26) The bending of light around an obstacle is called: * Polarization * Interferences * Diffraction * Refraction (27) The dispersion of white light after passing through the prism is due to: * Different intensities * Different amplitude * Different temperature * Different wave length (28) The appearance of colour in soap bubbles is due to: * Polarization * Diffraction * Reflection * Interference (29) Which of the following phenomenon can not be explain by wave theory: * Interference * Diffraction * Photo electric effect * Dispersion (30) The wavelength of visible light range from: * 40nm to 70nm * 400nm to 700nm * 4000nm to 7000nm * 4000 °A to 7000 °A (31) The wavelength of x – rays can be determined by the equation: * $m\lambda = d \sin \theta$ * $m\lambda = 2d \sin \theta$ * $m\lambda = \frac{1}{2} \sin \theta$ * $m\lambda = d \sin 2\theta$ (32) The condition for the constructive and destructive interference are reversed in case of thin film due to: * Phase reversal of one part of a wave * Phase reversal of both parts of wave * Phase reversal of none * Change in frequency of waves

XI-Physics Chapter# 9, Page# 35 (33) Yellow light from a sodium lamp is used to form Newton's rings. The central spot in Newton's ring will be: * Yellow * Bright * Dark * None of these (34) In a young's double slit experiment the fringe spacing is: * \lambda Ld (35) A very useful device for analyzing spectrum of a light source is a /an: * Diffraction grating * Interferometer * Newton's rings * Spectrometer (36) In the complete electromagnetic spectrum which of the following has the least frequency: *x - rays* Ultraviolet light (37) The phenomenon of interference of light was first demonstrated by: * Newton's * Thomas young * Einstein * Michelson Two monochromatic waves of the same wavelength are travelling through a medium. They can interfere destructively, provided their path difference is: * \(\lambda\) * 2\lambda (39) To replace a bright fringe by the next bright fringe in a Michelson interferometer, the movable mirror is moved through a distance equal to: * \(\lambda * $\lambda/2$ $* \lambda/4$ * 2\lambda

XI-Physics Chapter# 9, Page# 36 (40) When light falls on a thin film, the colours appear due to: * Polarization * Interference * Diffraction * None of these (41) Diffraction of x – rays can be studied by: * Diffraction grating * Rock salt * Young's Double Salt Experiment * Thin films The phenomenon of interference, diffraction and polarization can be explained on the basis of: * Wave theory of light * Quantum theory light * Wave and quantum theory None of these (43) One angstrom is equal to: $*10^{-10}$ m * 10⁻⁶m * 10⁻³m If 2000 lines/cm are ruled on a grating its grating element is: * $5 \times 10^{-4} \text{m}$ * $5 \times 10^{-5} \text{m}$ $*5 \times 10^{-6} \text{m}$ $*.5 \times 10^{-7}$ m The reciprocal of the number of lines per unit length of a diffraction grating is called: * Slit spacing * Fringe spacing * Grating element * Grating unit

XI-Physics Chapter# 9, Page# 37 When light enters from one medium to another medium: * Frequency is changed * Speed is changed * Both are changed * None of these (47) In grating spectrum the largest deviation angle will be for the colour: * Red * Yellow * Blue * Violet (48) Michelson's interferometer may be used to find the * Wave length of light Wave length of sound * Velocity of light Velocity of sound (49) When the movable mirror of Michelson's interferometer moves a distance equal to the wave length of the monochromatic light, the interference pattern shifts. * One fringe Two fringes * Three fringes * Four fringes (50)In Bragg's equation, the angle θ denotes: * Glancing angle * Angle of diffraction * Angle of deviation * Critical angle (51) Monochromatic yellow light is unable to show: * Reflection * Refraction * Dispersion * Interference

XI-Physics Chapter# 9, Page# 38

ANSWER KEY

1. Newton	2. Huygen
3. Maxwell	4. Photons
5. Dual nature	6. Spherical wave front
7. Plane wave front	8. 90°
9.2	10. E = hv
11. Wave front	12. mλ
13. $(m + \frac{1}{2})\lambda$	14. Interference
15. Phase Coherence	16. Radio wave
17. Phase reversal	18. Polarization
$19.2 d \sin \theta = m\lambda$	20. Frequency
21. All of these	22. 2.5 x 10 ⁻⁶ m
23. An integral multiple of wave length	24. Perpendicular to each other
25. Frequency	26. Diffraction
27. Different wave length	28. Interference
29. Photo electric effect	30. 4000 °A to 7000 °A
31. $m\lambda = 2d \sin \theta$	32. Phase reversal of one part of a wave
33. Dark	34. $\frac{\lambda L}{d}$
35. Spectrometer	36. Infrared light
37. Thomas young	$38. \ \frac{3\lambda}{2}$
39. λ/2	40. Interference
41. Rock salt	42. Wave theory of light
43. 10 ⁻¹⁰ m	44. 5 x 10 ⁻⁶ m
45. Grating element	46. Speed is changed
47. Red	48. Wave length of light
49. Two fringes	50. Glancing angle
51. Dispersion	