XI-Physics Chapter# 8 Page# 24

MULTIPLE CHOICE QUESTIONS (MCQs):

(1)	The to and fro m position is called:	otion or up and	down motion of	a body about its mean
	* Translatory motio	n	* Vibratory motio	n
	* Rotatory motion		* Angular motion	
(2)	A vibratory motion	n is always under:	-	
	* An applied force		* A restoring force	e
	* A magnetic force		* A periodic force	:
(3)	Number of vibration	ons in one second	is called:	~
. :	* Frequency	* Time period	* Amplitude	* Revolution
(4)	Time to complete of			, 0
	* Frequency	* Time period	* Amplitude	* Revolution
(5)	The maximum dis is called:	tance covered by	a vibrating body	from mean the position
	* Frequency	* Time Period	* Amplitude	* Revolution
(6)	The value of elastic	e restoring force i	n case of a sprig:	
·	* kx	* -kx	* ½ kx	$* \frac{1}{2} kx^2$
(7)	In S.H.M the accel	eration is:	*	
	* Directly proportio	nal to the displace	ment from mean pos	sition ,
	* Inversely proporti	onal to the displac	ement from mean po	osition
	* Directly proportio	nal to the square o	f displacement from	mean position
	* Inversely proporti	onal to the square	of displacement from	m mean position
₍ (8)	A simple harmonic	motion is a type	of:	
	* Rotational motion	i	* Rectilinear moti	on
	Circular motion		* Elliptical motion	
(9)	circle is:		•	a body moving along a
	$*-\omega^2x$	$* - \omega x^2$	$*-\omega x^2$	* \omega x ²
(10)	The acceleration of	f vibrating mass a	ttached to the end	of as elastic spring is:
	$*a = -\frac{k}{m}x$	$*a = \frac{k}{m}x$	$* a = -\omega^2 x$	$*a = \omega^2 x$
(11)	The velocity of a vi	brating mass atta	ched to the end of	an elastic spring is:
"	$* \sqrt{\frac{k}{m}(x_o^2 - x^2)}$	$* \sqrt{\frac{m}{k}(x_o^2 - x^2)}$	$* \sqrt{\frac{k}{m}(x^2 - x_o^2)}$	$* \sqrt{\frac{m}{k}(x^2 - x_o^2)}$
(12)	The maximum vel	locity of vibratin	g mass attached t	to the end of as elastic
	* $x_o \sqrt{\frac{m}{k}}$	* $x_{\circ}\sqrt{\frac{k}{m}}$	* $x_{\circ}\sqrt{\frac{2k}{m}}$	* $x_o \sqrt{\frac{m}{2k}}$

XI-Physics Chapter# 8 Page# 25

(13)	The unit of spring	g constant K are:		
	* Joule-sec		* Newton-sec	
	* Newton per mete	er	* Newton-metre	
(14)	The magnitude o but its direction is		ce is the same as	that of the applied force
	* Same as that of t	the applied force	* Opposite to the	applied force
. •	* Perpendicular to	the applied force	* Parallel to the	applied force
(15)	The instantaneou	is K·E of a mass at	tached to the end o	of an elastic spring is:
	* $\frac{1}{2}k(x_o^2-x^2)$	$*\frac{1}{2}k(x_o^2+x^2)$	$* \frac{1}{2}k(x^2-x_o^2)$	* $\frac{1}{2}$ k(x+x _o)
(16)	The maximum K	·E of a mass attach	ed to the end of a	n elastic spring is:
	* $\frac{1}{2}kx^2$	* $\frac{1}{2}kx_{\circ}^{2}$	* $\frac{1}{4}kx_o^2$	* kx _o ²
(17)	The instantaneou	s P·E of a mass att	ached to the end o	of an elastic spring is:
	* $\frac{1}{2}kx_{o}^{2}$	* kx _° ²	$* \frac{1}{2}kx^2$	
(18)	In S.H.M the velo	ocity of a particle is	s maximum at:	
	* Extreme position	ns	0	* Mean position
•,	* Between mean a	and extreme position	on the left side	* None of these
(19)	In S.H.M the velo	ocity of a particle is	minimum at:	
	* Extreme position	ns (M)	*	* Mean position
	* Between mean a	and extreme position	on the left side	* None of these
(20)	For S.H.M. it is n	ecessary that:		
	* χ ∝ χ	* χ ∝ -χ	*a∝χ	* a ∝ -χ
(21)	An object is exec	uting SHM. Its Kir	etic energy is max	cimum at its:
	* Mean position		* Extreme position	on
	* At any point alo	ng the path	* Non of these	
(22)		stem is performin b, the time period		period "T" .If we doubl
	* T	* 2 T	* 1.414 T	* 0.707 T
(23)	The projection of	a particle moving	in a circle has:	
	* Rectilinear moti	on * Circular motion	n * S. H. M	* None of these
(24)	The product of tir	ne period and frequ	iency of vibration	of a particle is equal to:
	* 0.5	* 1.0	* 2.0	* π
(25)	The quantity whi	ch is conserved in	simple harmonic r	notion is:
	* Kinetic Energy	* Total energy	* Potential Energ	gy * Electrical Energy
(26)		rough its equilibriu motion becomes:	ım position the spe	eed of a body executing
	* Zero	* Maximum	* One third	* Double

XI-Physics Chapter# 8 Page# 26

(27) The motion of simple	pendulum is:		
*Always simple harmo	onic	* May be simple ha	armonic
* Can never be simple	harmonic	* Circular	
(28) If the bob of a vibr string at its mean pos			nly detached from the
* a straight line *	a circle	* a parabola	* a hyperbola
(29) The time period of a	simple pendulu	m is:	
$* T = \frac{1}{2\pi} \sqrt{\frac{1}{g}} $	$T = 2\pi \sqrt{\frac{1}{g}}$	$* T = \frac{1}{2\pi} \sqrt{g/1}$	$* T = 2\pi \sqrt{\frac{g}{l}}$
(30) The time period of sin	mple pendulum	is directly proport	ional to:
* √ <u>L</u> *	√g	* L	* √17L
(31) The time period of a	simple pendulu	m depends upon:	, 6
* Length *	Amplitude	* Mass of the bob	* Temperature
(32) The time period of a	simple pendulu	ms increases if its l	ength:
* Decreases *	Increases	* Remain content	* None of these
(33) If the mass of the bob * Double *	of a simple pen Be half	dulum is doubled, is * Remain constant	ts time period will be: t * None of these
(34) The frequency of osc	illation of simp	le pendulum depen	ds upon:
* The mass of bob	1/3	* The amplitude o	f vibration
* The length of pendu	lum	* None of these	
(35) The time period of a	second's pendu	llum on the moon v	vill be:
* 4.9 Sec. *	12 Sec.	* 2 Sec.	* 0.33 Sec.
(36) The frequency of a se	econd's penduli	um:	
	2 Hz	* 0.5 Hz	* 4 Hz
(37) A unit suitable for fr	equency is:		
* Hertz *	Cycle/Sec ²	* Vib./Sec ²	* m/Sec.
(38) The length of second	pendulum on e		
	98.2cm	* 99.2cm	* 100cm
(39) The frequency of sim			
* $f = 2\pi \sqrt{\frac{1}{g}}$	$f = \frac{1}{2\pi} \sqrt{\frac{1}{g}}$	* $f = 2\pi \sqrt{\frac{g}{l}}$	* $f = \frac{1}{2\pi} \sqrt{g}_1$
(40) At what place motion	n of a simple pe	ndulum becomes fa	astest:
	Murree	* Karachi	* Multan
(41) Which of the following	ng does not exh	ibit simple harmon	ic motion:
* A hanging spring su	pporting a weig	ht * The balance wh	eel of a watch
* The wheel of an aut	o mobile	* The spring of vi	olins
(42) The time period of a	simple pendulu	ım depend upon:	
* Mass	Sec.	* Length	
* Value of g		* Both length and	value of g

Xi-Physics Chapter# 8 Page# 27

ANSWER KEY

(1)	Vibratory motion	(2)	A restoring force .
(3).	Frequency	(4)	Time period
(5)	Amplitude	(6)	–kχ
(7)	Directly proportional to the displacement from mean position	(8)	Rectilinear motion
(9)	$-\omega^2 x$	(10)	$a = -\frac{k}{m}x$
(11)	$\sqrt{\frac{k}{m}}(x_o^2 - x^2)$	(12)	$x_{\circ}\sqrt{\frac{k}{m}}$
(13)	Newton per metre	(14)	Opposite to the applied force
(15)	$\frac{1}{2}k(x_o^2-x^2)$	(16)	$\frac{1}{2}kx_{\circ}^{2}$
(17)	$\frac{1}{2}Kx^2$	(18)	Mean position
(19)	Extreme positions	(20)	a∝-χ
(21)	Mean position	(22)	1.414T
(23)	S.H.M.	(24)	1.0
(25)	Total energy	(26)	Maximum
(27)	Maybe simple harmonic	(28)	A straight line
(29)	$T = 2\pi \sqrt{\frac{1}{g}}$	(30)	\sqrt{L}
(31)	Length	(32)	Increase
(33)	Remain constant	(34)	The length of pendulum
(35)	2 Sec	(36)	0.5 Hz
(37)	Hertz	(38)	100cm
(39)	$f = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$	(40)	Karachi
(41)	The wheel of an auto mobile	(42) H	Both length and value of g