XI Physics Chapter# 7, Page# 26

MULTIPLE CHOICE QUESTIONS (MCQs)

(1)		ly is moved through certain distance by the
	action of:	
4.	* Energy	* Force
	* Power	* Momentum
(2)	When a body is moved through a certain displacement \bar{d} by a force \bar{F} , then the work done is:	
1	* $\vec{F} + \vec{d}$	* Fxd
	* F · d	* $\vec{F} + \vec{d}_2$
(3)	The S.I unit of work is:	
	* Erg	* Watt
	* Foot-Pound	* Joule
(4)	The dimensions of work are:	
1	$*ML^2T^2$	* MLT
	* MLT ⁻¹	$*ML^2T^{-2}$
(5)		when the angle between the direction of the
	force and displacement.	
	* 90°	*180°
	* 60°	* 0°
(6)		between the force and the displacement is:
	* 0°	* 90°
(5)	* 180°	* 45°
(7)	When the direction of force is opposite to the direction of displaceme work done will be:	
	* Positive	* Negative
	* Zero	* None of these
(8)	The work done by the centripetal force is always:	
	* Positive	* Zero
	* Negative	* Maximum
(9)	The work done by the centripetal for because:	orce F on a body moving in a circle is zero
	* The body moves parallel to F	* The body moves opposite to F
•	* The body moves at right angle F	
	* The centripetal and centrifugal force balance each other	
(10)		
	* Torque	* Angular momentum
	* Linear momentum	* Power
(11)		
	* Power	* Voltage
	* Energy	* Chare

XI Physics Chapter# 7, Page# 27 (12) If $\vec{F} = 4\hat{i} - 2\hat{j}$ and $\vec{d} = 3\hat{i} + 4\hat{j}$, the work done will be: * 4 Joules * 8 Joules * 2 Joules * 12 Joules (13) If a body of mass of 2kg is raised vertically through 2m, then the work done will * 38.2J * 392.1J * 39.2J * 40J (14) The Work done along closed path in a conservative field is: * Maximum . * Negative * Zero * Positive (15) A conservative field is one in which: * Work is independent of the path * Work depends on the path *Linear momentum is conserved * Angular momentum is conserved (16) A field in which the work done in moving a body along a closed path is zero, is called: * Electric field * Magnetic field * Gravitational field * Conservative field (17) The rate of doing work is called: * Energy * Force * Power * Inertia (18) Power is defined as: Work * Work x time Time Work Work x Distance Distance (19)The dot product of force and velocity is: * Work * Power * Energy * Momentum (20) Power is a scalar quantity because: * It contain two vector quantities as $\vec{F} \cdot \vec{V}$ * It contain two vector quantities as $\vec{F} \times \vec{V}$ * It is the rate of change of momentum * None of these. (21) The average power and instantaneous power become equal if work is done at: * Any rate * At variable rate * At uniform rate * At high rate (22) The S.I unit of power is: * Joule/Sec * Joule Sec * Horse Power * Kilowatt Hour (23) The unit of Power in British Engineering system is: * Horse Power

* Joule

* Kilowatt

XI Physics Chapter# 7, Page# 28 Power is equal to: Fxd (25)The dimension of power are: $* ML^2T^{-3}$ $* M^2L^2T^{-3}$ $*ML^2T^2$ (26) Kilo watt hour is the unit of: * Force * Power * Energy * Velocity (27) One horse power is equal to: * 400 watt * 580 watt * 746 watt * 70 watt (28) A jet plane engine develop a thrust (forward force) of 2000N when flying at 200m/s. The power of the engine is: $*4 \times 10^{5} \text{ hP}$ $*4 \times 10^{5} KW$ $*4 \times 10^5 \text{ W}$ $*4 \times 10^{5} MW$ (29) Which of the following is not a unit of power: * Kilo watt hour * Kilo watt * Horse power * ft. lb/Sec (30) 25000 watt power is equal to: * 2.5 K watt * 25 JP * 50 hP * 33.5 hP (31) One mega watt-hour is equal to: * $36 \times 10^6 J$ $*36 \times 10^{12} J$ $*36 \times 10^{9} J$ $*36 \times 10^{8} J$ (32) One kilo watt-hour is equal to: $*3.6 \times 10^{6} J$ $*3.3 \times 10^{9} J$ $* 3.9 \times 10^6 J$ * $3.6 \times 10^9 J$ (33) Ability to do work is called: * Power Energy * Torque * Force (34) Energy stored in the spring of watch is called: * Potential Energy * Kinetic Energy * Elastic Potential Energy * Nuclear Energy (35) Kinetic energy is a quantity which is: * Scalar * Vector * Both scalar and vector * None of these (36) If velocity is doubled then: * Momentum increases 4 times and K E increases 3 times * Momentum and K-E remains same * Momentum increases 2 times and K-E increases 3 times * Momentum increases 2 times and K-E increase 4 times

XI Physics Chapter# 7, Page# 29 (37) When the speed of a moving body is doubled: * Its K E is doubled * Its acceleration is doubled * Its P.E is doubled * Its Momentum is doubled (38) A body of mass 3kg lies on the surface of the table 2m high. It is moved on the surface by 4m. The change in P·E will be: * Zero * 9.8J * 19.6J * 329.4J (39) If mass and speed both double, the kinetic energy of a moving body: * Increases 4 times * Increases 6 times * Increases 8 times * Remains the same (40) What is the kinetic energy of body 5kg and is its momentum 15kg m/s: * 30.0J * 55.0J * 50.0J * 22.5J (41) The dimensions of the kinetic energy are: * $\frac{1}{2}ML^2T^2$ The absolute P.E of a body of mass "M" in the earth gravitational field is given by: (42)-GMeM **GMeM** (43) According to the work-energy equation work done one body is equal to: * The difference of its final and initial momentum * The difference of its final and initial P.E * The difference of its final and initial K.E * The difference of its velocities The tidal energy is due to the gravitational pull of: * Sun * Moon * Mars * Planet (45) The fossil fuels are: * Coal, Petroleum and natural gas * Wood * Plastic and seed oils (46) A gas filled balloon possesses: * Kinetic energy * Energy * Potential energy * None of these (47) When a body moves vertically upward, the work done will be: (2010)* Positive * Negative * Zero * Maximum (48) A weigh lifter consumer 500J of energy to lift load in seconds the used is: * 125 watts * 250 watts

* 1000 watts

* 500 watts

XI Physics Chapter# 7, Page# 30

ANSWER KEY

(1) Force	(2) $\vec{F} \cdot \vec{d}$
(3) Joule	(4) ML ² T ⁻²
(5) 0°	(6) 180°
(7) Negative	(8) Zero
(9) The body moves at right angle F	(10) Torque
(11) Energy	(12) 4 Joules
(13) 39.2 J	(14) Zero
(15) Work is independent of the path	(16) Conservative field
(17) Power	(18) Work Time
(19) Power	(20) It contain two vector quantities as $\vec{F} \cdot \vec{V}$
(21) At uniform rate	(22) Joule/Sec
(23) Horse power	$(24) \frac{\vec{F} \cdot \vec{d}}{t}$
(25) ML ² T ⁻³	(26) Energy
(27) 746 watt	(28) 4 x 10 ⁵ W
(29) Kilo watt hour	(30) 33.5hP
(31) $3.6 \times 10^9 \text{ J}$	(32) 3.6 x 10 ⁶ J
(33) Energy	(34) Potential Energy
(35) Scalar	(36) Momentum increases 2 times and K-E increase 4 times
(37) Its Momentum is doubled	(38) Zero
(39) Increases 8 times	(40) 22.5J
(41) ML ² T ⁻²	$(42) \frac{-GMeM}{r}$
(43) The difference of its final and initial K.E	(44) Moon
(45) Coal, Petroleum and natural gas	(46) Potential energy
(47) Negative	(48) 250 watts