MULTIPLE CHOICE QUESTIONS (MCQs)

 (1) The change of position of a body in a particular direction is called its: * Displacement * Velocity * Speed * Acceleration (2) The shortest distance between two points covered along a straight line is called: * Speed * Displacement * Velocity * Acceleration (3) The S.I unit of displacement is: * Metre * Foot * Centimeter * All of these Velocity: (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Constant acceleration * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 	Displ	acement:	
 (2) The shortest distance between two points covered along a straight line is called: * Speed * Displacement * Velocity	(1)	The change of position of a body in a par	
* Speed * Displacement * Velocity * Acceleration (3) The S.I unit of displacement is: * Metre * Foot * Centimeter * All of these Velocity: (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity * Average Velocity * Average Velocity * Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Constant acceleration * Variable acceleration * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to:		* Displacement * Velocity	* Speed * Acceleration
 (3) The S.I unit of displacement is: * Metre * Foot * Centimeter * All of these Velocity: (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 	(2)	The shortest distance between two points	s covered along a straight line is called:
* Metre * Foot * Centimeter * All of these Velocity: (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity (8) The average and instantaneous velocities will be equal when a body moves with: [2008 F] * Uniform velocity * Constant acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to:		* Speed * Displacement	* Velocity * Acceleration
* Metre * Foot * Centimeter * All of these Velocity: (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity (8) The average and instantaneous velocities will be equal when a body moves with: [2008 F] * Uniform velocity * Constant acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to:	(3)	The S.I unit of displacement is:	
 (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity * Non-Uniform Velocity * Average Velocity * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 			* Centimeter * All of these
 (4) The rate of change of distance is called: * Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity * Non-Uniform Velocity * Average Velocity * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 	Velo	city:	
* Motion * Velocity * Speed * Acceleration (5) The rate of change of displacement is called: * Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity (8) The average and instantaneous velocities will be equal when a body moves with: * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If \$\Delta r\$ is the change in the position of body during time \$\Delta t\$, then its velocity is equal to:		•	
* Speed * Acceleration * Velocity * Retardation (6) The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to:		* Motion * Velocity	* Speed * Acceleration
* Speed * Acceleration * Velocity * Retardation The total change of displacement divided by the total change in time of a body is called its: * Uniform Velocity * Instantaneous Velocity * Average Velocity * Non-Uniform Velocity The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity * Uniform Velocity * Instantaneous Velocity * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to:	(5)	The rate of change of displacement is cal	lled:
 its: * Uniform Velocity * Average Velocity * Non-Uniform Velocity (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity (8) The average and instantaneous velocities will be equal when a body moves with: [2008 F] * Uniform velocity * Constant acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: The distribution * Acceleration 		* Speed * Acceleration	* Velocity * Retardation
 its: * Uniform Velocity * Average Velocity * Non-Uniform Velocity (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity * Average Velocity * Uniform Velocity * Instantaneous Velocity (8) The average and instantaneous velocities will be equal when a body moves with: [2008 F] * Uniform velocity * Constant acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: The distribution * Acceleration 	(6)	The total change of displacement divide	d by the total change in time of a body is called
 * Average Velocity	, .		
 (7) The change of displacement in a very small interval of time of a body is called its: * Non-Uniform Velocity		* Uniform Velocity	* Instantaneous Velocity
 * Non-Uniform Velocity * Uniform Velocity * Instantaneous Velocity (8) The average and instantaneous velocities will be equal when a body moves with: [2008 F] * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 		* Average Velocity	* Non-Uniform Velocity
 * Uniform Velocity	(7)	The change of displacement in a very sm	all interval of time of a body is called its:
 (8) The average and instantaneous velocities will be equal when a body moves with: [2008 F] * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 11		* Non-Uniform Velocity	* Average Velocity
 * Uniform velocity * Constant acceleration *Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 		* Uniform Velocity	* Instantaneous Velocity
 * Uniform velocity * Constant acceleration * Variable acceleration * Retardation (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 	(8)	The average and instantaneous velocities	will be equal when a body moves with:
*Variable acceleration	14 14 14 14 14 14 14 14 14 14 14 14 14 1		[2008 F]
 (9) The magnitude of velocity is called: * Acceleration * Speed * Distance * Retardation (10) If Δr is the change in the position of body during time Δt, then its velocity is equal to: 		* Uniform velocity	* Constant acceleration
* Acceleration * Speed * Distance * Retardation (10) If $\overline{\Delta r}$ is the change in the position of body during time Δt , then its velocity is equal to:		*Variable acceleration	* Retardation
(10) If $\frac{\Delta r}{\Delta t}$ is the change in the position of body during time Δt , then its velocity is equal to:	(9)	The magnitude of velocity is called:	
		* Acceleration * Speed	* Distance * Retardation
	(10)	If $\overline{\Delta r}$ is the change in the position of body	during time Δt , then its velocity is equal to:
ΛV ΛV		$\overline{\Delta V}$ $\overline{\Delta P}$	
* *		*	
	(11)		2.
(11) A boy goes from 2 m to 12m mark and back to 10m mark in 3 second its average speed is: [2003 P.M]	(11)		
speed is: [2003 P.M] * 2 m/s		•	

XI-Physics Chapter# 3, Page# 38 A particle of mass 0.5gm moving along x - aixs is located at $x_1 = 15m$ at $T_1 = 5Sec$ and at $x_2 = 33$ m at 13sec. Its velocity is: * 2.45m/Sec * 6m/Sec * 4.45m/Sec * 2.25m/Sec (13) If the distance-time graph of a moving body is a straight line, the body moves with: * Uniform velocity * Uniform acceleration * Non-uniform acceleration * Average velocity (14) If the distance – time graph of a moving body is a curve, the body moves with: * Uniform velocity * Average velocity * Uniform Acceleration * Variable velocity (15)The S.I unit of velocity is: * Foot/Second + * Meter/Second * Centimeter/Second * All of these (16) The dimension of velocity is: Acceleration: (17)The change in velocity per unit time is called: * Uniform velocity * Acceleration * Retardation (18) If the velocity of a body increases by equal amounts in equal intervals of time it is said to have: * Uniform acceleration * variable acceleration * Average acceleration * Instantaneous acceleration (19) The acceleration of a body in a very small interval of time (time tends to zero) is called: * Average acceleration * Uniform acceleration * Variable acceleration * Instantaneous acceleration (20)When the value of average and instantaneous acceleration are equal the body is said to be moving with: * Average acceleration * Uniform acceleration * Instantaneous acceleration * Variable acceleration (21) The rate of increase of velocity is called: * Negative Acceleration * Final velocity * Average velocity * Positive Acceleration (22)The decrease in velocity per unit time is called: * Initial velocity * Final velocity * Average velocity * Retardation The S.I unit of acceleration is: (23) $* m/s^2$ * Foot /s² * cm/s² * All of these (24)The dimensions of acceleration is: $*LT^2$ * LT-1 * LT-2 If the velocity time graph of a moving body is a curve, the body moves with: [2005] * Constant speed * Constant velocity * Constant Acceleration * Changing Acceleration (26) The acceleration of body moving with uniform velocity is: * Zero * Not Zero * Uniform * Variable (27) What is the average acceleration if a car moves 20m/s to 50m/s in 15 Sec? $* 1 \text{ m/s}^2$ $*2 \text{ m/s}^2$ $* 3 \text{ m/s}^2$ $*4 \text{ m/s}^2$ If a car is moving with uniform acceleration of 2m/sec², then in 4 seconds its velocity (28) increases from 10m/sec. to: * 18 m/sec * 28 m/sec * 38m/sec (29) A body starting from rest covers a distance of 0.45km and acquired a velocity of 300km/hr. Its acceleration will be: $* 0.092 \text{ m/sec}^2$ $* 0.5 \text{ m/sec}^2$

* 7.71 m/sec^2

 $* 0.15 \text{ m/sec}^2$

XI-Physics Chapter# 3, Page# 39

Equ	ations of Motioa:		
(30)	Which one is the correct equation to	calculate time "t"	when "vi", "vf" and "a" have
	their usual meaning:		[2008 F]
	$* t = \frac{\mathbf{v_i} + \mathbf{a}}{\mathbf{v_i} + \mathbf{a}} \qquad * t = \frac{\mathbf{v_i} + \mathbf{a}}{\mathbf{v_i} + \mathbf{a}}$	$\mathbf{v}_{i} = \mathbf{v}_{i} - \mathbf{v}_{i}$	$v_f + v_i$
	$* t = \frac{\mathbf{v}_f + \mathbf{a}}{\mathbf{v}_i} \qquad * t = \frac{\mathbf{v}_i + \mathbf{a}}{\mathbf{v}_f}$	a	a
(31)	Which one is the correct equation to a		
	usual meaning:		[2009 F]
		$v^2 - v^2$	· · · · · · · · · · · · · · · · · · ·
	* $a = \frac{v_f^2 + v_i^2}{S}$ * $a = \frac{v_f^2 + v_i^2}{2S}$	* a = -1 -1 -2 S	$* a = \frac{1}{28}$
(32)	The distance covered by a body in tim	e t starting from rest	is
()			the second secon
	$*\frac{1}{3}at^2$ * V t	$*\frac{1}{2}at^{2}$	* at ²
na ar a		2	
	ion Under Gravity:	1 11	
(33)	The force which attracts a body toward		
(34)	* Mass	* Density	* Acceleration
(34)	How much height does a freely falling	, body of mass to kg	1000 In 257
	* 9.8	* 49 m	[2003 P.M, 2005 S,2006] * 4.9 m
(35)	A lkg stone when falling freely fro	om a height of 10n	Strike the ground with the
` '	velocity of:		[2002 P.M, 2006 F]
		* 98 m/s	* 196 m/s
(36)	A body is thrown vertically upward with	an initial velocity 9.8	m/s. It will attain a height:
	* 9.8 m	* 4.9 m	* 29.4 m
(37)		ing from rest, fall fre	ely in one second:
	* 19.6m	* 4.0m	* 4.9m
(38)			[2007 S]
(BA)	*5N *9.8N	* 19.6 N	* Zero
(39)			
Low	* 20 N 196 N	* 19.6 N	* 1960 N
цауу: (40)	s of Motion: The Laws of motion show the relation	hatriaani	
(40)			
5.5	* Mass and acceleration	* Mass and veloc	
(41)	Newton's First law of motion is also ki	* Force and accel	
(**)	* Law of Power	* Law of Inertia	[2009 F]
	* Law of Action and Reaction	* Law of Force	
(42)	Inertia of a body is measured in terms of	of:	
, ,		* Its velocity	* Its reaction
(43)	When a constant force is applied on a body		iform: [2008 F]
	* Velocity * Speed	* Acceleration	* Momentum
44)	Swimming is possible because of which	h law of motion:	
198	* First * Second	* Third	* All of these
45)	It is true that: $*a = mF$ $*a =$	_ v	D
43)	It is true that: $*a = mF$ $*a =$	= 	$=\frac{1}{m}$ * $a=\frac{m}{F}$
46)	If F is kept constant and m is doubled, t	then acceleration is:	o rd of the second of the second
	* One-fourth	* One-third	* One-ninth
47)	The unit of tension in C.G.S system is:		[2007 S]
~ :··	* Joule * Energy	* dyne	* Foot-Pound
48)	Dyne is the unit of:		[2009 F]
	* Angular Acceleration	* Acceleration	
	* Displacement	* Force	
	*		

•					
				hysics Chapter# 3	Page# 40
(49)	A helicopter of mass What resultant force * Zero * 3 × 10 ⁴ N upward	acts on the helicopt * 3 ×			002 P.E]
(50)	A stone has mass 10 * 9800 N	•		* 98000 N	
(51)	A mass of 5 kg mov	es with an accelerati	on of 10 m/s ² force	on it is:	
(52)	* 10 N Newton is the force v	* 50 N vhich produces an acc	* 2 N releration of 1 m/sec ² i	* 15 N in a body of mass:	
	$*\frac{1}{2}$ Kg	* 1 Kg	* 2 Kg	* 2 gm	
(53)	A helicopter weight the helicopter is:	- -		-	
	* 4720 N	* 3920 N	* 3924 N	* 3916 N	[2012]
	on of Bodies conne			-0	
(54)	acceleration is giver	by the formula:	' are hanging vertice	1.0	iey. I neir
	$* a = \left(\frac{m + m_2}{m_1 + m_2}\right) g$	* $\mathbf{a} = \left(\frac{\mathbf{m}_1 - \mathbf{m}_2}{\mathbf{m}_1 + \mathbf{m}_2}\right) \mathbf{g}$	* $a = \frac{2m_1m_2}{m_1 + m_2}g$	$* a = \frac{m_1 g}{m_1 + m_2}$	
(55)	Two bodies of mas given by the formula		nanging vertically ov	ver a pulley. The	tension is
			$* T = \frac{m_2 g}{m_1 + m_2}$	* $T = \frac{2m_1m_2g}{m_1 + m_2}$	
(56)	The force applied or		1 7		
(57)	* Weight The S.I unit of tensi		* Tension	* Torque	
(2,)	* Watt		* Newton	* Dyne	
(58)	The direction of ten		always be in the:		
	* Same direction of		* opposite direction	of applied force	
(50)	* Both of these		* None of these		
(59)	A body of mass 10 $(g = 10 \text{ m/s}^2)$:	ikg is suspended by	a string, the tensio	n produced in th	e string is
y 5,10	- 10	* 18 N	* 9.8 N	* 980 N	
Mom	entum and law of	Conservation of M	Iomentum:		
(60)	The product of mass	s of a particle and its	velocity is called:		
(61)	* Force The S.I unit of linea	* Acceleration r momentum is:	* Momentum	*Angular mome [2003 P.E, 2004, 2	
	* N/s	* N-s	* J/s	* N·m	
(62)	•	_			
(62)	* Thrust	* Torque	* Moment	* Momentum	
(63)	* 200 N.s	* 800 N.s	cond what will be the * 5 N:s	* 500 N.s	entum:
(64)	A rocket moves acco				
(6E)	* Mass	* Energy	* Momentum	* Force	
(65)			n moves backward w		
	* Velocity equal to t * Velocity greater th		* Velocity less than	mai of the buffet	5.
(66)			ery short time, then in	mpulse will be:	

XI-Physics Chapter# 3, Page# 41

	stic comision:	
(67)		[2001, 2003, P.E, 2005 S, 2008]
	* Both momentum and K. E are conserve	· · · · · · · · · · · · · · · · · · ·
	* Neither momentum nor K. E is conserv	ed
	* Only momentum is conserved	* Only K. E is conserved
(68)	In an inelastic collision of two bodies:	
	* K E is conserved only	* Momentum is conserved only
	* Both K.E and momentum are conserved	* None of these
(69)	When two balls collide and as a result ter	nperature changes, which one of the following
	law is conserved?	
	* Velocity	
(70)	The velocity of a body after elastic collision	n with a body of the same mass at rest will be:
		[2006 F]
(21)	* Reduced to half * Doubled	
(71)	will:	a massive body which is at rest, light object
		* be stopped
	* rebound with twice the velocity	
(72)		have equal momentum, Which of them has
()	greater velocity:	The state of the s
		* The heavy ball
•		* Depends upon the direction of momentum
Frict	tion:	
(73)		
		* Kinetic friction * All of these
(74)	- 1	
	* Always less than the kinetic friction	
	* Always greater than kinetic friction	and the state of t
	* Equal to kinetic friction	Allow the Limit Culed
(75)	* Sometime smaller and sometime greater The correct relation of μ is:	
(75)	The correct relation of pris.	[2005 F]
	* $\mu = R/f$ * $\mu = f/R$	
(76)	When a body slides over a surface, the	kinetic friction (f _k) and static friction (f _s) are
	related:	[2003 P.E]
(77)		* (k = 0
(11)		
(78)		Less than one * Greater than one eriences a frictional force which is given by:
(70)	11 body failing down through a fluid exp	[2009 F, 2012]
	* Law of gravitation * Snell's law	* Stoke's law * None of these
(79)	The Property of fluids due to which they r	esist their flow is called:
	* Static friction * Viscosity	* Velocity * Co-efficient of friction
(80)	Stoke's law holds good for:	[2009]
	* The bodies of all shapes	Motion through non-viscous medium
	* Motion through vacuum	Motion through viscous medium
(81)	· · · · · · · · · · · · · · · · · · ·	P.E, 2002 P.M, 2003 F, 2006, 2007]
		Bragg's Law * Newton's Law
(82)	Which of the following is the mathematica	
(02)		$F = 6 \pi v \qquad *F = 6 \pi \eta r v$
(83)	The unit of coefficient of friction in S.I un	
	* Newton * Dyne *	joule * None of these (No unit)

Inclined Plane:

The acceleration of a body on a smooth inclined plane depends upon: * Mass of a body * Weight of a body * Reaction of the plane* Angle of inclination

(85)When a body moves up a rough inclined plane, it is acted upon by:

A body is moving up a frictionless inclined plane surface at an angle of 45°. Its (86).* - 3.46 m/s² acceleration is given by:

 $*-6.93 \text{ m/s}^2$ $*3.46 \text{ m/s}^2$ * 6.93 m/s^2

(87) The acceleration of a body moving down a frictionless inclined plane at 30° will be: [2001, 2004]

 $*4.9 \text{ m/s}^2$

* 9.8 m/s²

* 980 m/s²

* 98 m/s²

ANSWER KEY

1. Displacement	2. Displacement	3. Meter
4. Speed	5. Velocity	6. Average Velocity
7. Instantaneous	8. Uniform Velocity	9. Speed
$10. \frac{\overline{\Delta r}}{\Delta t}$	11. 4 m/s	12.
13. Uniform Velocity	14. Variable Velocity	15. Meter / Second
16. LT ⁻¹	17. Acceleration	18. Uniform Acceleration
19. Instantaneous Acceleration	20. Uniform Acceleration	21. Positive Acceleration
22. Retardation	23. m/s ²	24. LT ⁻²
25. Changing Acceleration	26. Zero	27. 2 m/s ²
28. 18 m/s	29. 0.092 m/s ²	30. $t = \frac{v_i + v_i}{a}$
31. $a = \frac{v_i^2 + v_i^2}{2S}$	32. $\frac{1}{2}$ a t ²	33. Weight
34. 19.6m	35. 14 m/s	36. 4.9 m
37. 4.9 m	38. Zero	39. 196 N
40. Force and acceleration	41. Law of inertial	42. Its mass
43. Acceleration	44. Third	45. a = F/m
46. one-half	47. Dyne	48. Force
49. Zero	50. 0.98 N	51. 50 N
52. l Kg	53. 3920 N	$\begin{array}{c} 54. \\ & = \sqrt{\left(\frac{m_1 - m_2}{m_1 - m_2}\right)} g \end{array}$
55. $T = \frac{2 m_1 m_2 g}{m_1 + m_2}$	56. Tension	57. Newton
58. Opposite direction of applied force	59. 100 N	60. Momentum
61. N.S	62. Momentum	63. 500 N.S
64. Momentum	65. Velocity less then that of the Bullet	66. FΔt
67. Both momentum and K.E are conserved	68. Momentum conserved only	69. Momentum
70. Zero	71. rebound with the same velocity	72. The light ball
73. All of these	74. Always greater then kinetic Friction	75. $\mu = f/R$
76. fk < fs	77. Less than one	78. Stoke's law
79. Velocity	80. Motion through viscous Medium	81. Stoke's law
82. F = 6 π η r ν	83. None of these (No unit)	84. Angle of inclination
	86. – 6.93 m/s ²	87. 4.9 m/S ²

XI-Physics Chapter-4 Problems, Page# 28

MULTIPLE CHOICE QUESTIONS (MCQs):

(1)	Body thrown at some angle θ above or below the horizontal gravity is called:	and moves freely under the action of
-,		
(2)		* Projectile
(~)	r - g are to during its:	
(3)	Time of action # ()[iii	* Trajectory
(~)		
(4)		* Circle
(-)	V. Sinθ V. Con	
	$ * t = \frac{V_0 \sin \theta}{g} $	$\star t = \frac{2V_0 \sin \theta}{1 + 1}$
(5)	The maximum builth attained in	g
(3)	The maximum height attained by a projectile is:	
	* $H = \frac{V_0 \cdot \sin \theta}{\theta}$	$* H = \frac{V_o^2 \sin \theta}{1 + \frac{1}{2} \sin \theta}$
(6)	The basis of 2g 2g	2 g
(6)		
	* $R = \frac{V_o^2 \sin^2 \theta}{2g}$	$\frac{\theta}{\theta} = \frac{V_0^3 \cos^2 \theta}{\cos^2 \theta}$
(7)	The total time taken by a projectile from station and	g
V. J.	is given by:	
	* $T = \frac{V_o \sin \theta}{2g}$	9 2V Sin ²
	$ T = \frac{1}{2g} $ $ T = \frac{1}{2g} $	$* T = \frac{2 \sqrt{3} m}{2 \alpha}$
(8)	Due to presence of air resistance the total time of flight of a p	rojectila:
	* Remains the same * Decreases * Becomes zer	o * Increases
(9)	A projectile is fired with initial velocity of 90m/s to hit a	ground level target its maximum
	horizontal range will be:	. Ground lever target its maximum
	* 9.2m	* 81m
(10)	In projectile motion a body moves with:	
7, 4	* Constant vertical component of velocity * Constant hor	izontal component of velocity
	* Both Changing horizontal and vertical component of velocit	V
	* Vertical component changing but Horizontal component of	velocity constant
(11)	If a projectile is launched at 45° with velocity 100m/s it his	the target. It will have double the
	range if its velocity is:	
(13)	* 141.4m/s	* 400m/s
(14)	of 1 if a projectile is thrown at an angle of 35° it hit a centruin ta	rget. It will have the same range if
5	it is thrown at an angre of.	
(13)	* 45°	1 - 1 * 70°
). <i>1</i> .	* Angle of projection * Velocity of projection * Both angle	
(14)	During the projectile motion the acceleration along the horizon	and velocity * None of these
	* Decreases * Is zero * Increases	* None of these
(15)	The projectile motion is a superposition of:	Trone of these
	* Circular motion * One diomentional motion * SHM	* None of these
(16)	A projectile which is fired horizontally has its speed maximum	at the moment of
	* Projection * Hitting the ground * Both of these	* None of these
(17)	The range of a projectile is maximum when the factor Sin 20 is	s equal:
	*1 1 45	* 90
18)	An angle subtending at its centre by an arc whose length is equ	al to its radius is:
10	* 37.3°	* 67.3°
17)	Two projectiles A and B are thrown up with the some sprespectively with the horizontal then:	peed at an angle of 60° and 30°
	* The range of A and R will be some	B will be greater
20)	* The range of A and B will be same * The range index In a projectile motion the velocity with remains the same is:	ependent of the angle
,	* Velocity	tree - Tomorinal estates
21)	An aircraft takes off at 30° with 500km/h it vertial component	of velocity with
	* 500 km/h	* Zero
	Z. J. Kill / II	- 20,0

		XI-Physics (Chapter-4 Problems, Page# 29
(22)	A projectile must be Launched to maximum re * 60°	ange at an angle of: * 30°	* 9()°
(23)	Circular motion is an example of motion in: * One dimension		
(24)	In uniform circular motion, the acceleration is * The centre	* Three dimension always directed: * The tangent	* No dimension
(25)	* Between the these tangent and the normal. The number of radians in a complete circle is:	* None of these	
(26)	* 360 * 180 The relation between time period end angular	*π	* 2π
(=0)	3	* $\omega = \frac{J}{2\pi}$	$*\omega = \frac{2T}{}$
(27)	If 'r' is the radius of the circular path of a parti		
(28)	The centripetal acceleration of a body moving		* W=1 X V
	* $\frac{4\text{Tr}^2}{\pi^2}$ * $\frac{4\pi^2 r}{T^2}$	$*\frac{4r^2T^2}{\pi^2}$	* $\frac{4\pi^2}{(2r)}$
(29)	A body is moving along a circle with an increa * Tangential acceleration only (at)	sing speed it possess	es:
٠,	* Both tangential and centripetal acceleration	* Centripetal acceler * No acceleration	4
(30)	The angle between centripetal acceleration and	tangential accelerati	on is:
	* 0°	* 180°	* 45°
(31)	•	* 57.3°	* 0.017°
(32)	S.I unit of angular velocity is:	1.1.	
(33)	* m/see	* Deg/see rele with uniform spee	* Rev./see
	* Linear velocity	on * Both	* None of these
(34)	If r is the radius of the circular path of a particle	e its linear acceleration	on(∝) are related by:
•		* ∝=ā x r	$* \overline{\infty} = \overline{a} \times \overline{r}$
(35)	The length of an arc subtending one radian at the		f radius 0.5m is:
(36)	* 0.05m	* 1 m	* 0.15m
(0.0)		 Centripetal accelera 	
	* Both tangential and centripetal acceleration	* No acceleration	•
(37)	If a body is rotating in a circle with a certain co	nstant tangential spec	ed it must have:
	* Only centripetal acceleration	* Only tangential acc	eleration
(38)	* Both centripetal and tangential acceleration lf a body is moving is a circle of radius "y" with the	* None of these	ha pantain 1
	V V^2	V	V ²
	* 7	$\frac{1}{\gamma^2}$	$*\frac{1}{\gamma^2}$
(39)	Centripetal force is also called:		
(40)	* Centrifugal force	* Tangential force on is called:	* None of these
(445	* Orbital force	Centrifugal force	* Restoring force
(41)	What is the centrifugal force acting on a mass rotated at a speed of 1m/sec.	of 20kg tied to one	end of a sting 10m long and
(d2)		5N	* 10N
74)	A cyclist cycling around a circular racing track : * The centripetal force upon him is less than the	skius because:	
	* The centripetal force upon him is greater than	the limiting friction	
	* The centripetal force upon him is equal to the	limiting friction	* None of these
43)	When angular velocity of a disk increases angular a	cceleration α and ang	ular velocity ω are.
	* parallel * Not parallel *	perpendicular	* None
44)	If the axis of rotation of a rotating body passes thro * Linear motion * Orbital motion *	ough the body itself, the	hen its motion is called:
	Total monon	Spin motion	* S.H motion

XI-Physics Chapter-4 Problems, Page# 30

ANSWER KEY

(1) Projectile	(2) Trajectory	(3) Parabola	$(4) t = \frac{V_0 \sin \theta}{g}$
$(5) H = \frac{V_o^2 \sin^3 \theta}{2g}$	$6) R = \frac{V_o^2 \sin 2\theta}{g}$	$(7) T = \frac{2V_o \sin \theta}{g}$	(8) Decreases
(9) 826.5m	(10) vertical component changing but Horizontal component of velocity constant	(11)141.4m/s	(12) 55°
(13) Both angle and velocity	(14) Is zero	(15) None of these	(16) Both of these
(17) 1	(18) 57.3°	(19) The range of A and B will be same	(20) Horizontal velocity
(21) 250 km /h	(22) 45°	(23) Two dimension	(24) The centre
(25) 2π	$(26) \ \omega = \frac{2\pi}{T}$	(27) $\vec{\mathbf{v}} = \vec{\mathbf{w}} \times \vec{\mathbf{r}}$	$(28) \frac{4\pi^2 r}{T^2}$
(29) Both tangential and centripetal acceleration	(30) 90°	(31) 57.3°	(32) Radian/see
(33) Linear velocity	$(34) \ \overline{a} = \overline{\alpha} \times \overline{r}$	(35) 0.5m	(36) Both tangential and centripetal acceleration
(37) Only centripetal acceleration	$(38) \frac{V^2}{r}$	(39) Centre-Seeking Force	(40) Centripetal force
(41) 2N	(42)	(43) parallel	(44) Spin motion