(1) When velocity time graph is a straight line parallel to time axis then.
(a) acceleration is const
(b) acceleration is variable
(c) acceleration is zero
(d) velocity is zero
(2) Area under velocity time graph represent.
(a) force
(b) momentum
(c) distance
(d) acceleration
(3) Slope of velocity time graph is.
(a) acceleration
(b) distance
(c) force
(d) momentum
(4) Instantaneous and average velocities become equal when body.
(a) has zero acceleration
(b) has uniform acceleration
(c) has variable acceleration
(d) moves in a circle
(5) Which law of motion is also called law of inertia?
(a) 1st law
(b) 2nd law
(c) 3rd law
(d) 4th law
(6) Inertia of an object is quantitative measure of its.
(a) Volume
(b) Density
(c) Mass
(d) Temperature
(7) Momentum depends upon.
(a) force act on the body
(b) mass of the body
(c) velocity of the body
(d) both mass and velocity of the body
(8) The dimension of force is.
(a) $\left[M L T^{-2}\right]$
(b) $\left[M L^{2} T^{-2}\right]$
(c) $\left[M L^{2} T^{2}\right]$
(d) $\left[M L^{-2} T^{-2}\right]$
(9) Which of the following pair has same direction always?
(a) force, displacement
(b) force, velocity
(c) force, acceleration
(d) force, momentum
(10) A body is falling freely under gravity. How much distance it falls during an interval of time between $1^{\text {st }}$ and $2^{\text {nd }}$ seconds of its motion, taking $\mathrm{g}=10$?
(a) 14 m
(b) 20 m
(c) 5 m
(d) 25 m
(11) What is the shape of velocity time graph for constant acceleration?
(a) straight line
(b) parabola
(c) inclined curve
(d) declined curve
(12) Taking off rocket can be explained by.
(a) $1^{\text {st }}$ law of motion
(b) $2^{\text {nd }}$ law of motion
(c) law of conservation of momentum
(d) law of conservation of energy
(13) Which of the following is not an example of projectile motion.
(a) A gas filled balloon
(b) Bullet fired from gun
(c) A football kicked
(d) A base ball shot
(14) Distance covered by a freely falling body in 2 seconds will be.
(a) 4.9 m
(b) 19.6 m
(c) 39.2 m
(d) 44.1 m
(15) The trajectory (or path) of a projectile is.
(a) Straight line
(b) Parabola
(c) Hyperbola
(d) Circle
(16) A football player will throw a football at maximum distance if the angle of projection is:
(a) 30°
(b) 45^{0}
(c) 60°
(d) 90°
(17) The horizontal range of a projectile, at a certain place, is completely determined by
(a) the angle of projection
(b) the initial velocity of projection
(c) the mass of the projectile
(d) speed and mass of the projectile
(18) Range of a projectile on a horizontal plane is same for the following pair of angles:
(a) 30° and 60°
(b) 20° and 80°
(c) 0^{0} and 45^{0}
(d) 10° and 90°
(19) A cricket ball is hit at 45° to the horizontal with K.E. of E. The K.E. at the highest point is:
(a) zero
(b) $\mathrm{E} / 2$
(c) $E / \sqrt{2}$
(d) E
(20) A body covering equal displacement in equal interval of time possesses:
(a) Variable velocity
(b) Uniform acceleration
(c) Uniform velocity
(d) None of above
(21) If the slop of velocity-time graph gradually decreases, then the body is said to be moving with:
(a) Positive acceleration
(b) Negative acceleration
(c) Uniform velocity
(d) Variable velocity
(22) The total time of flight of projectile is given by:
(a) $v_{i} \sin \theta / g$
(b) $2 v_{i} \sin \theta / g$
(c) $v_{i} \sin \theta / 2 g$
(d) $2 v_{i} \sin ^{2} \theta / g$
(23) Horizontal range of the projectile is given by the expression $\quad R=$ $2 v_{i}^{2} \sin 2 \theta / g$. For what value of θ, range is maximum:
(a) 0^{0}
(b) 30^{0}
(c) 45^{0}
(d) 90°
(24) The velocity of projectile at its maximum height is:
(a) $v_{i} \sin \theta$
(b) $v_{i} \cos \theta$
(c) Maximum
(d) Zero
(25) Change in momentum is called:
(a) Force
(b) Pressure
(c) Tension
(d) Impulse
(26) When the object is moving towards earth, the value of " g " is taken as:
(a) Positive
(b) Negative
(c) Zero
(d) None
(27) The property of a body due to which it opposes its state of rest or uniform motion is called:
(a) Momentum
(b) Inertia
(c) Torque
(d) Weight

District Whushab

