CHAPTER \# 2: VECTORS AND EQUILIBRIUM

1) Rectangular coordinate system is also called.
a) polar coordinate system
b) Cartesian coordinate system
c) Cylindrical coordinate system
d) Space coordinate system
2) The direction of a vector in space is specified by.
a) one angle
b) two angle
c) three angle
d) no angle
3) Maximum number of rectangular components are
a) one
b) two
c) three
d) infinite
4) The resultant of two forces of equal magnitudes is also equal to the magnitude of the forces. The angle between the two forces is.
a) 30°
b) 60°
c) 90°
d) 120°
5) In which quadrant the two rectangular components of a vector have same sigh?
a) $1^{\text {st }}$
b) $2^{\text {nd }}$
c) both $1^{\text {st }}$ and $3^{\text {rd }}$
d) $4^{\text {th }}$
6) Two vectors A and B are making angle θ with each other. The scalar projection of vector B on vector A is written as.
a) $\mathrm{A} \cdot \mathrm{B} / \mathrm{A}$
b) $\mathrm{A} \cdot \mathrm{B} / \mathrm{B}$
c) $\cos \theta$
d) Both a and b are correct.
7) $\hat{\imath} .(\hat{\jmath} \times \hat{k})$ is equal to.
a) 1
b) i^{\wedge}
c) j^{\wedge}
d) k^{\wedge}
8) The direction of vector product is given by.
a) head to tail rule
b) right hand rule
c) left hand rule
d) triangular rule
9) Null vector is a vector which has.
a) zero magnitude
b) no specified direction
c) both a and b are correct
d) both a and b are not correct
10) Torque is defined as.
a) turning effect of force
b) cross product of force and position vector
c) product of force and moment arm
d) all a, b and c are correct
11) The dimension of torque is.
a) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
b) $\left[\mathrm{MLT}^{-2}\right]$
c) $\left[\mathrm{ML}^{2} \mathrm{~T}\right]$
d) $\left[\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right]$
12) SI unit of torque is.
a) N.m
b) Joule
c) Both a and b are correct
d) Neither a nor be is correct
13) A body in equilibrium.
a) always at rest
b) always in uniform motion
c) may be at rest or in uniform motion
d) may be at rest or in motion
14) A body will be in complete equilibrium when it is satisfying.
a) $1^{\text {st }}$ condition of equilibrium
b) $2^{\text {nd }}$ condition of equilibrium
c) both $1^{\text {st }}$ and $2^{\text {nd }}$ condition of equilibrium
d) impossible
15) The cross product $\hat{\imath} \times \hat{\jmath}$ is equal to
a) zero
b) one
c) $-\hat{k}$
d) \hat{k}
16) The unit vector in the direction of vector $\vec{A}=2 \hat{\imath}-2 \hat{\jmath}+\hat{k}$ is
(a) $2 \hat{\imath}-2 \hat{\jmath}+\hat{k}$
(b) $(2 \hat{\imath}-2 \hat{\jmath}+\hat{k}) / 9$
(c) $(2 \hat{\imath}-2 \hat{\jmath}+\hat{k}) / 3$
(d) $(2 \hat{\imath}-2 \hat{\jmath}+\hat{k}) / 5$
17) If $\mathbf{A}=A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k}$ and
$\mathbf{B}=B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k}$ then.
(a) $\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
(b) $\mathbf{A} \cdot \mathbf{B}=A_{x} B_{y}+A_{y} B_{z}+A_{z} B_{x}$
(c) $\mathbf{A} \cdot \mathbf{B}=A_{y} B_{z}+A_{z} B_{y}+A_{z} B_{x}$
(d) $\mathbf{A} \cdot \mathbf{B}=A_{x} B_{z}+A_{y} B_{y}+A_{z} B_{x}$
18) The vector in space has
(a) Two components
(b) One component
(c) Three components
(d) Four components
19) A unit vector is obtained by dividing a vector with:
(a) Its direction
(b) Its magnitude
(c) Its magnitude and direction
(d) None
20) Name the quantity which is vector:
(a) Density
(b) Power
(c) Charge
(d) Moment of Force
21) A force is acting along y axis. Its component along x -axis is
(a) 5 N
(b) Zero
(c) 10 N
(d) 2.5 N
22) At what angle, the components of a vector have same magnitude:
(a) 0^{0}
(b) 30^{0}
(c) 45^{0}
(d) 90^{0}
23) If the x-component of a vector is positive and y-component, then resultant vector lies in what quadrant:
(a) $1^{\text {st }}$ quadrant
(b) $2^{\text {nd }}$ quadrant
(c) $3{ }^{\text {rd }}$ quadrant
(d) $4^{\text {th }}$ quadrant
24) SI unit of torque is:
(a) Nm^{-1}
(b) Nm
(c) Nm^{-2}
(d) None
25) Dot product of two non-zero vectors is zero, when angle between them is:
(a) 0^{0}
(b) 30°
(c) 45^{0}
(d) 90^{0}
26) The cross product $\hat{\imath} \times \hat{\imath}=\hat{\jmath} \times \hat{\jmath}=\hat{k} \times \hat{k}$ is equal to
(a) 1
(b) -1
(c) Zero
(d) None
27) For a body to be in complete equilibrium,
(a) $a=0$ and $\alpha=0$
(b) $\sum F=0$
(c) $\sum \tau=0$
(d) None
28) If a body is rotating with constant angular velocity, its torque will be:
(a) 0
(b) Maximum
(c) May be zero
(d) None
29) If $\mathbf{A}=2 \hat{\imath}-\hat{\jmath}+3 \hat{k}$, then the magnitude of vector A is:
(a) 4
(b) 14
(c) $\sqrt{14}$
(d) None
30) If $A_{x}=A_{y}$, then the angle between the vector A with x -axis will be:
(a) 0^{0}
(b) 30^{0}
(c) 45^{0}
(d) 90^{0}
31) If vector A lies in the third quadrant, its direction will be:
(a) $180^{0}-\phi$
(b) $360^{0}-\phi$
(c) $180^{0}+\phi$
(d) None
