CHAPTER # 2: VECTORS AND EQUILIBRIUM

- 1) Rectangular coordinate system is also called.
 - a) polar coordinate system
 - b) Cartesian coordinate system
 - c) Cylindrical coordinate system
 - d) Space coordinate system
- 2) The direction of a vector in space is specified by.
 - a) one angle
 - b) two angle
 - c) three angle
 - d) no angle
- 3) Maximum number of rectangular components are
 - a) one
 - b) two
 - c) three
 - d) infinite
- 4) The resultant of two forces of equal magnitudes is also equal to the magnitude of the forces. The angle between the two forces is.
 - a) 30°
 - b) 60°
 - c) 90°
 - d) 120°
- 5) In which quadrant the two rectangular components of a vector have same sigh?
 - a) 1st
 - b) 2nd
 - c) both 1^{st} and 3^{rd}
 - d) 4^{th}

6) Two vectors A and B are making angle θ with each other. The scalar projection of vector B on vector A is written as.

- a) A.B/A
- b) A.B/ B
- c) $\cos \theta$
- d) Both a and b are correct.

7) $\hat{\iota} \cdot (\hat{\jmath} \times \hat{k})$ is equal to.

- a) 1
- b) i[^]
- c) \hat{j} d) \hat{k}
- 8) The direction of vector product is given by. a) head to tail rule
 - b) right hand rule
 - c) left hand rule
 - d) triangular rule
- 9) Null vector is a vector which has.
 - a) zero magnitude
 - b) no specified direction
 - c) both a and b are correct
 - d) both a and b are not correct

- **10**) Torque is defined as.
 - a) turning effect of force
 - b) cross product of force and position vector
 - c) product of force and moment arm
 - d) all a, b and c are correct
- 11) The dimension of torque is.
 - a) $[ML^2T^{-2}]$
 - b) $[MLT^{-2}]$
 - c) $[ML^2T]$
 - d) $[ML^{-2}T^{-2}]$
- 12) SI unit of torque is.
 - a) N.m
 - b) Joule
 - c) Both a and b are correct
 - d) Neither a nor be is correct
- 13) A body in equilibrium.
 - a) always at rest
 - b) always in uniform motion
 - c) may be at rest or in uniform motion
 - d) may be at rest or in motion
- 14) A body will be in complete equilibrium when it is satisfying.
 - a) 1st condition of equilibrium
 - b) 2nd condition of equilibrium
 - c) both 1^{st} and 2^{nd} condition of equilibrium
 - d) impossible
- **15**) The cross product $\hat{i} \times \hat{j}$ is equal to
 - zero a)
 - b) one
 - $-\hat{k}$ c)
 - ƙ d)
- 16) The unit vector in the direction of vector $\overline{A} = 2\hat{\imath} - 2\hat{\jmath} + \hat{k}$ is
 - (a) $2\hat{\imath} 2\hat{\jmath} + \hat{k}$
 - (b) $(2\hat{\imath} 2\hat{\jmath} + \hat{k})/9$
 - (c) $(2\hat{\imath} 2\hat{\jmath} + \hat{k})/3$
 - (d) $(2\hat{\imath} 2\hat{\jmath} + \hat{k})/5$

17) If $\mathbf{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$ and

- $\mathbf{B} = B_x \hat{\iota} + B_y \hat{\jmath} + B_z \hat{k} \text{ then.}$
 - (a) **A**. **B** = $A_x B_x + A_y B_y + A_z B_z$
 - (b) **A**. **B** = $A_x B_v + A_v B_z + A_z B_x$
 - (c) $\mathbf{A} \cdot \mathbf{B} = A_y B_z + A_z B_y + A_z B_x$
 - (d) $\mathbf{A} \cdot \mathbf{B} = A_x B_z + A_y B_y + A_z B_x$
- 18) The vector in space has
 - (a) Two components
 - (b) One component
 - (c) Three components
 - (d) Four components

Physics (MCQ's)

1st Year (Chapter 2)

- **19**) A unit vector is obtained by dividing a vector with:
 - (a) Its direction
 - (b) Its magnitude
 - (c) Its magnitude and direction
 - (d) None
- **20**) Name the quantity which is vector:
 - (a) Density
 - (b) Power
 - (c) Charge
 - (d) Moment of Force
- 21) A force is acting along y axis. Its component along x-axis is
 - (a) 5 N
 - (b) Zero
 - (c) 10 N
 - (d) 2.5 N
- 22) At what angle, the components of a vector have same magnitude:
 - (a) 0^0
 - (b) 30⁰
 - (c) 45°
 - (d) 90⁰
- 23) If the x-component of a vector is positive and y-component, then resultant vector lies in what quadrant:
 - (a) 1^{st} quadrant
 - (d) 1^{r} quadrant (b) 2^{rd} quadrant (c) 3^{rd} quadrant (d) 4^{th} quadrant
- 24) SI unit of torque is:
 - (a) Nm^{-1}
 - (b) Nm
 - (c) Nm^{-2}
 - (d) None
- 25) Dot product of two non-zero vectors is zero, when angle between them is:
 - (a) 0⁰
 - (b) 30°
 - (c) 45°

(d) 90°

- **26**) The cross product $\hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k}$ is equal to
 - (a) 1
 - (b) -1
 - (c) Zero
 - (d) None
- 27) For a body to be in complete equilibrium,
 - (a) a = 0 and $\alpha = 0$
 - (b) $\sum F = 0$
 - (c) $\Sigma \tau = 0$
 - (d) None
- **28**) If a body is rotating with constant angular velocity, its torque will be:
 - (a) 0
 - (b) Maximum
 - (c) May be zero
 - (d) None
- **29**) If $\mathbf{A} = 2\hat{\imath} \hat{\jmath} + 3\hat{k}$, then the magnitude of vector A is:
 - (a) 4
 - (b) 14
 - (c) $\sqrt{14}$
 - (d) None
- **30)** If $A_x = A_y$, then the angle between the vector A with x-axis will be:
 - (a) 0^0
 - (b) 30⁰
 - (c) 45°
 - (d) 90°
- 31) If vector A lies in the third quadrant, its direction will be:
 - (a) $180^0 \phi$
 - (b) $360^0 \phi$
 - (c) $180^0 + \phi$
 - (d) None
- 2

Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera