

Federal Board HSSC – I Examination Physics – Mark Scheme

SECTION B

Q.2			((2)
	$Power = \frac{Work \ done}{time \ taken}$			
	$\mathbf{P} = \frac{\overline{F}.\overline{S}}{t}$	(as work done = 75)	(1 mark)	
	$\mathbf{P} = \overline{F} \cdot \frac{\overline{S}}{t}$			
	as = t			
	then $P = \overline{P} \cdot \overline{V}$	the second s	(1 mark)	
Q.3		<u>, </u> , , , , , , , , , , , , , , , , , ,		(2)
	Yes, scalar product of two v between them is $90^{\circ} < \theta \le 180^{\circ}$		angle ' θ'	
	(also accept $\overline{AB} = AB \cos 2$,	(1 mark)	
		he by force of friction		
		ne by gravity when an object sed to a certain height.	1s (1 mark)	
	1 Cherry			
Q.4	~		((2)
2	Energy (PE) = $4.0 - 10^4 J$			(_)
	m = 60 kg $PE = mgh$		(1 mark)	
	h = $\frac{PE}{mg}$ = $\frac{4.0 \times 10^4}{60 \times 9.8}$ = $\frac{4.0 \times 10^4}{580}$	10 ⁴	(1 mark)	
	$\mathbf{n} = \frac{1}{mg} = \frac{1}{60 \times 9.8} = \frac{1}{588}$	$\frac{1}{8}$ = 08m	(1 mark)	
Q.5			((2)
	Speed of the car = V = 120k $\theta = 35^{\circ}$	mh^{-1}		

Visit us at <u>http://www.phycity.com</u> Federal Board of Intermediate and Secondary Education,Islamabad.

(1 mark)

(as $V_x = V \cos \theta$)

Let V_p is the speed of the airplane speed of the car = $V = V_p \cos \theta$

$$V_p = \frac{V}{\cos\theta} = \frac{120kmh^{-1}}{\cos 35^{\circ}} = 146.5 \text{ km h}^{-1}$$

or 40.7ms⁻¹

(2)

(2)

(2)

Q.6

Body will be weightless i.e. T = 0Equation of motion of a body of mass 'm' moving downward in an elevator with acceleration 'a' is T = mg - ma (1 mark) Where T is the apparent weight of the body If the body is falling freely then a = gtherefore T = 0 (1 mark)

Q.7

 $R = \frac{R_{max}}{2} \quad \text{(Given condition)}$ $\frac{Vi^2 Sin 2\theta}{g} = \frac{Vi^2/g}{2} \quad (1 \text{ mark})$ $Sin 2\theta = \frac{1}{2} = 0.5$ $2\theta = Sin^{-1}0.5 = 30^{\circ}$ $\theta = 15^{\circ} \text{ and } 75^{\circ} \text{ (because range is same for complementary angles)} \quad (1 \text{ mark})$

Q.8

According to 1st law of thermodynamics $Q = \Delta U + W$ $^{\circ} Q = 0$ (for an adiabatic process) $W = -\Delta U$ (1

mark)

Since the gas expands and does external work at the cost of its internal energy so it cools down. (1 mark)

Q.9
a. Period of oscillation
$$T = 20 \text{ ms} = 20$$
 is $s = 2 \text{ model} s = (1)^{2}$
mark)
b. $T = 20 \text{ ms} = 20 \cdot 10^{-3} \text{ s}$
 $\lambda = 600 \text{ mm} = 600 \cdot 10^{-3} \text{ m}$
 $V = \cdot \cdot \cdot (\text{as } f = \frac{1}{2})$
 $V = \frac{1}{T} \times \lambda = \frac{1}{2 \times 10^{-2}} \times 600 \cdot 10^{-3}$
 $V = 30 \text{ ms}^{-1}$ (1 mark)
Q.10
L.H.S dimensions of $v = [\text{LT}^{-1}]$ (1 mark)
R.H.S dimensions of $v = [\text{LT}^{-1}]$ (1 mark)
R.H.S dimensions of $\frac{1}{4z} = [\frac{MLT^{-2}}{ML^{-2}}]^{\frac{1}{2}} = [r_{c}r_{c}-1]$
L.H.S = R.H.S (1 mark)
also accept
Since $v = \frac{1}{4z}$
 $[r_{c}r_{c}-1] = [\frac{MLT^{-2}}{ML^{-2}}]^{\frac{1}{2}}$ (1 mark)
 $[r_{c}r_{c}-1] = [r_{c}r_{c}-1]$
 $[r_{c}-1] = [r_{c}r_{c}-1]$
 $[r_{c}-$

Visit us at http://www.phycity.com Federal Board of Intermediate and Secondary Education, Islamabad.

- Acceleration at $A = max \approx g = 9.8 \text{ ms}^{-2}$ (1 mark) a.
- From B to C sky diver moves with uniform velocity i.e. with b. terminal velocity therefore acceleration is zero. (1

mark)

Q.14

(3)

$$m = 25 \text{kg}$$

$$d = 10\text{m}$$

$$h = 3.0\text{m}$$

$$F = 200\text{N}$$
v at the top = 2 ms⁻¹ (1 mark)
using work energy principle
work done = $\Delta \text{KE} + \Delta \text{PE} + \text{work done against friction}$

$$Fd = \frac{1}{2^{\text{ms}^3}} + \text{mgh} + \text{work done against friction} (1 \text{ mark})$$

$$200 \quad 10 = 50 + 25 \quad 9.8 \quad 3 + \text{work done against friction}$$
Work done against friction = 2000 - 785 = 1215J (1 mark)
(OR)
Speed of the wave = v = 330 ms⁻¹
Length of the pipe = = = 12cm = 0.12m
Wavelength of 3rd harmonic = $\lambda_3 = ?$
Frequency of 5th harmonic = $f_5 = ?$ (1 mark)
a. $\frac{\lambda_4}{4} + \frac{\lambda_5}{2} + \frac{\lambda_5}{2} = -\frac{3}{2}$
 $\frac{5k}{4} = -\lambda_5 = -\frac{4}{3} = 0.096\text{m} = 9.6\text{cm}$ (1
b. $v = f_5 \lambda_5$
 $as = \frac{9k}{4} = -\lambda_5 = -\frac{4}{3}$
 $v = f_5 - \frac{4}{3}$
 $v = f_5 - \frac{4}{3}$
 $f_5 = -\frac{9t}{4} = -\frac{9 \times 330}{4 \times 0.12} = 6187.5 \text{ HZ}$ (1

mark)

(3)

mark)

Q.15

$$N = 250 \text{ lines/mm}$$

for 1st order n = 1
screen distance L = 200cm
$$\sin \theta = \frac{(107.3 - 72.7)cm}{200cm}$$

$$\sin \theta = 0.173 \qquad (1 \text{ mark})$$

$$d = \frac{1}{N} = \frac{1}{250}mm = \frac{1}{250} \times 10^{-3}m = 4 - 10^{-6}m$$
(1)

mark)

since
$$d \sin \theta = 4$$

 $= \frac{d \sin \theta}{n} = \frac{4 \times 10^{-6} \times 0.173}{1}$
 $= 6.92 + 10^{-7} m$
 $= 692 nm$ (1

mark)

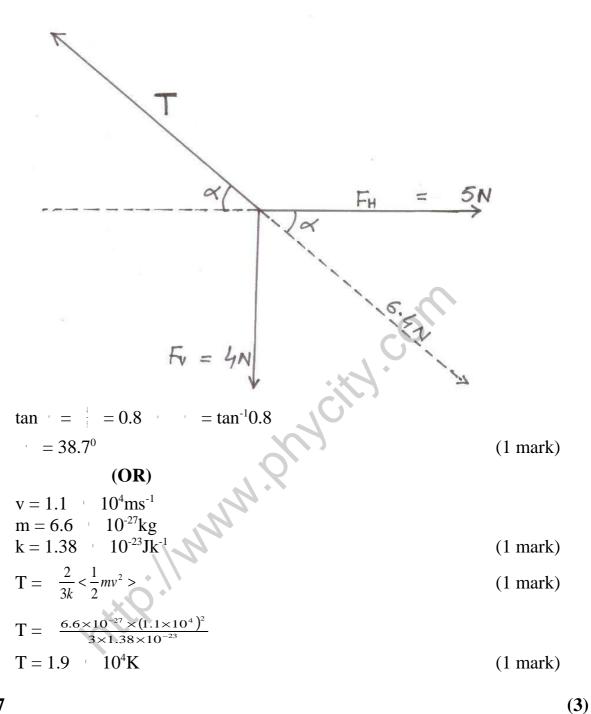
(**OR**)

$$d_{1} = 1 \text{ cm} = 0.01 \text{m}$$

$$v_{1} = 1 \text{ms}^{-1}$$

$$d_{2} = ?$$

$$v_{2} = 21 \text{ms}^{-1}$$
Since $A_{1}v_{1} = A_{2}v_{2}$
($\ominus A = \pi r^{2}$)
(1 mark)
$$v_{1} = -\ell v_{2}$$
($= v_{1} = -\ell v_{2}$
($= \sqrt{\frac{1}{21}} \times 0.01 = 2.18 + 10^{-3} \text{m} \approx 0.22 \text{ cm}$
(1 mark)
$$Q.16$$
(3


Q.16

(3)

$$F_{H} = 5N$$

 $F_{v} = 4N$
 $T = ?$
 $T = \sqrt{F_{n}^{2} + F_{v}^{2}}$ (1 mark)
 $T = \sqrt{5^{2} + 4^{2}} N$
 $T = \sqrt{41} N$
 $T = 6.4N$ (1 mark)

Direction of T

Visit us at <u>http://www.phycity.com</u> Federal Board of Intermediate and Secondary Education,Islamabad.

Q.17

Position Variable	B	A	C
Displacement	max	0	max
Velocity	0	max	0
Acceleration	max	0	max
Kinetic Energy	0	max	0
Potential Energy	max	0	max

Column B, all correct answers

(1 mark)

Visit us at http://www.phycity.com Federal Board of Intermediate and Secondary Education, Islamabad.

Column A, all correct answers (1 mark) Column C, all correct answers (1 mark) (\mathbf{OR}) T = 2000Nm = 1000 kg $\theta = 10^{\circ}$ $T - mg \sin \theta = F$ (1 mark) $T - mg \sin \theta = ma$ $\frac{T - mg\sin\theta}{m} \equiv \frac{T}{m} - g\sin\theta$ a = $a = \frac{2000}{1000} - 9.8 \sin 10^{\circ}$ (as $\sin 10^\circ = 0.1736$) a = 2 - 9.8 + 0.1736a = 2 - 1.7017 $a = 0.298 \text{ ms}^{-2}$ $a \approx 0.3 \text{ ms}^{-2}$ correct answer with correct units (2 marks) www.envit Q.18 (3) Output = 1000MJEfficiency = η (%) = 40% $\eta = \begin{array}{cc} \frac{40}{100} & = 0.4 \end{array}$ input = ? waste energy = ? output (1 mark)η = input input = 1000*MJ* = 2500MJ (1 mark) input = 0.4 waste energy = input - output = 25000 MJ - 1000 MJ= 1500 MJ or 1.5×10^9 J (1

mark)

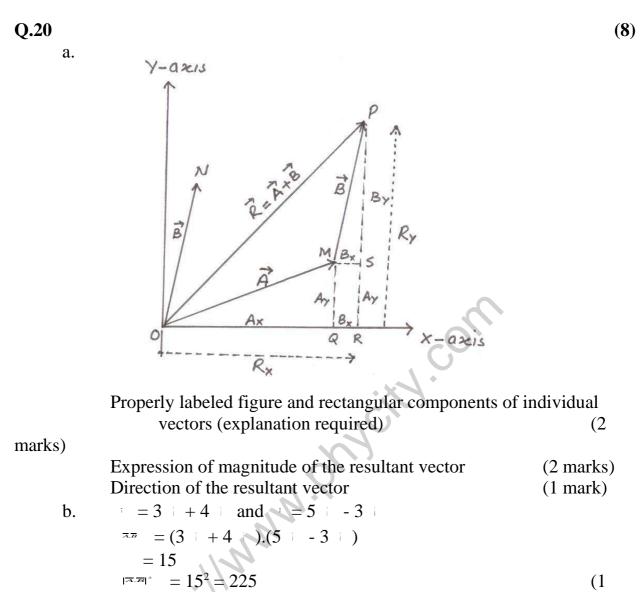
(OR)

$$t = \frac{m_{e}^{s}}{r}$$

$$t = \frac{1000 \times 9.8 \times 30}{15 \times 10^{4}} = 19.6 \text{ s}$$
correct answer with correct units (2 marks)
Q.19 (3)
a. From A to B object moves with uniform speed of 2ms⁻¹ (1 mark)
From B to C object moves with uniform deceleration (1 mark)
b. Distance covered = area under v - t graph
Distance covered = 2 + 2 = 4m (1 mark)
also accept:

$$d = V_{av} t = \left(\frac{(v_{1} + V_{2})}{2}\right)r = \left(\frac{2 + 2}{2}\right) \times 2 = 4 \text{ m}$$
(OR)
For core and cladding
Using n₁ sin $\theta_{1} = n_{2} \sin \theta_{2}$

$$n_{1} = 1.5$$


$$n_{2} = 1.4$$

$$\theta_{2} = 90^{\circ}$$

$$\theta_{1} = \theta_{0}$$
sin $\theta_{c} = \frac{n_{c} \sin \theta_{c}}{n_{c}} = \frac{1.44 \times \sin 90^{\circ}}{1.5}$
sin $\theta_{c} = 0.9333$
 $\theta_{c} = \sin^{-1} (0.933) \approx 69^{\circ}$ (1 mark)
For air and core
n sin $\theta = n_{1} \sin \theta'$
 $n = 1.0$
 $\theta = 7$
 $\theta' = 90^{\circ} - 69^{\circ} = 21^{\circ}$
 $n_{1} = 1.5$ (1 mark)
sin $\theta = \frac{n_{c} \sin \theta_{c}}{n} = \frac{1.5 \sin 21^{\circ}}{1} = 0.53$
 $\theta = \sin^{-1} (0.53)$
 $\theta = 32.5^{\circ}$ (1 mark)

SECTION C

Visit us at <u>http://www.phycity.com</u> Federal Board of Intermediate and Secondary Education,Islamabad.

mark)

$$\overline{\mathbf{x}} \times \overline{\mathbf{z}} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 0 \\ 5 & 0 & -3 \end{vmatrix}$$

$$= \left[(-12) - \left[(-9) + \right] (-20) \right]$$

$$= -12 + 9 - 20 + (-20)^{2}$$

$$= -12 + 9 + -20 + (-20)^{2}$$

$$= 144 + 81 + 400 = 625 \qquad (1 \text{ mark})$$

$$|\overline{\mathbf{x}} \times \overline{\mathbf{z}}|^{*} + |\overline{\mathbf{x}} \times \overline{\mathbf{z}}|^{*} = 225 + 625 = 850$$

$$\mathbf{z} = (3)^{2} + (4)^{2} = 9 + 16 = 25$$

$$\mathbf{z} = 5^{2} + (-3)^{2} = 25 + 9 = 34$$

$$\mathbf{z}^{2B^{2}} = 25 + 34 = 850$$

$$|\overline{\mathbf{x}} \times \overline{\mathbf{z}}|^{*} + |\overline{\mathbf{x}} \times \overline{\mathbf{z}}|^{*} = -4^{2}B^{2} \quad (\text{Proved}) \qquad (1$$

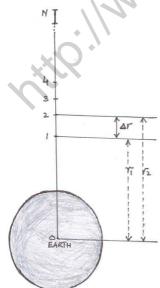
mark)

Visit us at <u>http://www.phycity.com</u> Federal Board of Intermediate and Secondary Education,Islamabad.

Q.21		(8)
a.	vertical distance/m Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi Vi	× →
b.	Figure, definition, examples and explanation Time of flight Range of the Projectile Angle of inclination = θ = 20° Initial velocity = v _i = 20 m/s Maximum vertical distance = H = ? Maximum horizontal distance = R = ?	(2 marks) (2 marks) (2 marks)
mark)	$H = \frac{V_i^2 \sin^2 \theta}{2g} = \frac{(50)^2 (\sin 20^{\circ})^2}{2 \times 9.8} = \frac{2500 \times 0.117}{2 \times 9.8} = 14.9$	≈15m (1
mark)	$R = \frac{Vi^2}{g} \sin 2\theta = \frac{(50)^2}{9.8} \sin(2 \times 20^\circ) = 163.9 \approx 164 \text{m}$	(1
Q.22		(10)
a.	Statement of 1 st law of thermodynamics with mathemati relation Explanation of the law	cal (1 mark) (2 marks)
b.	Explanation of isothermal process with P–V graph	(2 marks) (2 marks)
	Explanation of adiabatic process with P-V graph	(2 marks)
c.	Temperature difference between the source and the sink = $T_1 - T_2 = 100^{\circ}C = 100K$ Heat absorbed from the source = $Q_1 = 746J$ Heat rejected to the sink = $Q_2 = 546J$	

First Method:

 $\eta = \frac{Q_1 - Q_2}{Q_1} = \frac{746 - 546}{746}$ (1 mark) Now $\eta = \frac{T_1 - T_2}{T_1}$ Since $T_1 - T_2 = 100k$ $\eta = \frac{100}{T_1}$ $T_1 = \frac{100}{0.268} = 373k = 100^{\circ}C$ (1


mark)

and
$$T_2 = T_1 - 100 = 273k = 0^{\circ}C$$
 (1 mark)

Second Method:

$\frac{\underline{\varrho}_1}{\underline{\varrho}_2} = \frac{\underline{r}_1}{\underline{r}_2} T_2 = \mathbf{T}_1 \frac{\underline{\varrho}_2}{\underline{\varrho}_1} = (\mathbf{T}_2 + 100) \frac{\underline{\theta}_1}{\underline{\theta}_1}$	(1 mark)
$\mathbf{T}_2 = \mathbf{T}_2 \frac{\varrho_1}{\varrho_1} + 100 \frac{\varrho_2}{\varrho_1}$	
$T_2 = T_2 \frac{546}{746} + 100 \times \frac{546}{746}$	
$T_2 = 0.73T_2 + 73.2$	
$T_2 (1-0.73) = 73.2$	(1 mark)
$T_2 = \frac{73.2}{0.27}$ $T_2 = 271.1 \approx 271k = -2^{\circ}C$	
$T_1 = T_2 + 100 = 371k = 98^{\circ}C$	(1 mark)
(OR)	

a. Definition of absolute potential energy (1 mark)

Figure, assumptions and explanation	(1 mark)
Derivation steps	(3 marks)
Absolute potential energy on the surface of the earth	(1 mark)

b. Explanation and derivation of relation for velocity (1 mark) Derivation for orbital radius (2 marks) Relationship between orbital radius and the time period (i.e. $r \propto t^{\frac{1}{2}}$) (1 mark)

www.phycity.com