ROTATIONAL DYNAMICS

An overview of Rotational Dynamics

For linear motion, dealing with problems of dynamics, we have
Force $=$ Mass $*$ Acceleration
$F=m a$
Now we analyze the rotational motion of rigid bodies about a certain axis of rotation.

Consider a certain force is applied at a certain location to a rigid body free to rotate about a particular axis, the resulting motion depends upon the location of the application of force. A given force applied a one location may produce difference rotation at some other location. This quantity which takes into account both the magnitude of the force and the location and direction in which it is applied is called torque.

We regard force as push or a pull, similarly we can regard torque as twist.
The effort required to put a body into rotation depends on the distribution of mass of the body about the axis of rotation. If the mass is closer to the azis of rotation, it is easier to rotate a body and vice versa. The inertial quantity that takes into account the distribution of body's mass is called rotational inertia or moment of inertia. Unlike mass, rotational inertia is not an intrinsic property of the body.

The equation, identical with equation (1), for rotational dynamics is:
Torque $=$ Moment of Inertia * Angular Acceleration

$$
\tau=I \alpha
$$

Relationship between Linear and Angular Variables:

Linear Motion

Linear Displacement x
Linear Velocity $=\frac{d x}{d t}$
Linear Aoceleration $a=\frac{d v}{d t}$
Force $F=m a$ or $F=\frac{d p}{d t}$
Work $W=\int F d x$
Kinetic Energy $K=\frac{1}{2} m v^{2}$
Power $P=F v$
Linear Momentum $p=m v$
Linear Impulse $=F t$
Mass (Translational Inertial) m

Angular Motion

Angular Displacement ϕ
Angular Velocity $\omega=\frac{d \phi}{d t}$
Angular Acceleration $\alpha=\frac{d \omega}{d t}$
Torque $\tau=I \alpha$ or $\tau=\frac{d L}{d t}$
Work $W=\int \tau d \phi$
Kinetic Energy $K=\frac{1}{2} I \omega^{2}$
Power $P=\tau \omega$
Angular Momentum $L=I \omega$
Angular Impulse $=\tau t$
Rotational Inertia I

Kinetic Energy of a Rigid Body

Consider a rigid body is spinning along the axis of rotation with uniform angular velocity ω. Let the object consist of n particles having masses $m_{1}, m_{2}, \ldots \ldots \ldots, m_{n}$, which are at distances $r_{1}, r_{2}, \ldots \ldots \ldots, r_{n}$ from axis of rotation.

The rotational kinetic energy for particle of mass $m_{1}=K . E_{1}=\frac{1}{2} m_{1} \gamma_{1}^{2} \omega_{1}^{2}$
The rotational kinetic energy for particle of mass $m_{2}=K . E_{2}=\frac{1}{6} m_{2} \frac{1}{2} \omega_{2}^{2}$
\vdots
$\vdots \quad \vdots$
$\vdots \quad \vdots$
\vdots

The rotational kinetic energy for particle of mass $m_{n}=K . E_{n}=\frac{1}{2} m_{n} r_{n}^{2} \omega_{n}^{2}$
Now the total rotational kinetic energy acting on the rigid body is described as:

$$
\begin{aligned}
& K \cdot E_{\text {rot }}=K \cdot E_{1}+K \cdot E_{2}+\ldots \ldots \ldots+K\left(E_{n}\right. \\
& \Rightarrow K \cdot E_{\text {rot }}=\frac{1}{2} m_{1} r_{1}^{2} \omega_{1}^{2}+\frac{1}{2} m_{2} r_{2}^{2} \omega_{2}^{2}+\ldots \ldots \ldots+\frac{1}{2} m_{n} r_{n}^{2} \omega_{n}^{2}
\end{aligned}
$$

Since the body is rigid, so all the masses will rotate with same angular velocity ω,

$$
\begin{aligned}
& \Rightarrow K \cdot E_{\text {rot }}=\frac{1}{2}\left(m_{1} r_{1}^{2}+m_{2} r_{2}^{2}+\ldots \ldots \ldots+m_{n} r_{n}^{2}\right) \omega^{2} \\
& \Rightarrow K \cdot E_{\text {rot }}=\frac{1}{2}\left(\sum_{i=1}^{n} m_{i} r_{i}^{2}\right) \omega^{2}=\frac{1}{2} I \omega^{2} \\
& . X^{0} .
\end{aligned}
$$

Where $\sum_{i=1}^{n} m_{i} r_{i}^{2}=I$ is the moment of inertia of the rigid body.

Parallel Axis Theorem

It states that
The rotational inertial of any body about any axis is equal to the sum of rotational inertia about a parallel axis through the centre of mass and the product of mass of body and square of distance between two axis"

Mathematically, it is described as:
$I=I_{C M}+M d^{2}$
Where
$I=$ Rotational inertia about an arbitrary axis
$I_{C M}=$ Rotational inertia about the parallel axis through the center of mass
$M=$ Mass of the body
$d=$ Perpendicular distance
between the axes

Proof

Consider a thin plane slab in $x y-$ plane. The plane can be regarded as the collection of particles each having mass m_{i}. Now we calculate the rotational inertia of the slab about z -axis passing through origin O and perpendicular to the slab.

$$
\begin{aligned}
& \left(x_{i}, y_{i}\right)=\text { Co-ordinates of } m_{i} \text { w.r.t origin } \\
& \left(x_{i}{ }^{\prime}, y_{i}^{\prime}\right)=\text { Co-ordinates of } m_{i} \text { w.r.t center of mass } \\
& \left(x_{c m}, y_{c m}\right)=\text { Co-ordinates of center of mass wrt origin }
\end{aligned}
$$

From figure,

$$
\begin{aligned}
& x_{i}=x_{i}{ }^{\prime}+x_{c m} \\
& y_{i}=y_{i}{ }^{\prime}+y_{c m}
\end{aligned}
$$

The rotational inertia about the axis through O is

$$
\Rightarrow I=I_{C M}+M d^{2}
$$

Which is the mathematical form of parallel axis theorem.

$$
\begin{aligned}
& I=\sum m_{i}\left(x_{i}^{2}, y_{i}^{2}\right)^{\ell} \\
& I=\sum m_{i}\left[\left(x_{i}{ }^{\prime}+x_{c m}\right)^{2}+\left(y_{i}{ }^{\prime}+y_{c m}\right)^{2}\right] \\
& I=\sum m_{i}\left[x_{i}{ }^{\prime 2}+x_{c m}{ }^{2}+2 x_{i}{ }^{\prime} x_{c m}+y_{i}{ }^{\prime 2}+y_{c m}{ }^{2}+2 y_{i}{ }^{\prime} y_{c m}\right] \\
& a^{5}=\sum m_{i}\left(x_{i}{ }^{\prime 2}+y_{i}{ }^{\prime 2}\right)+\sum m_{i}\left(x_{c m}{ }^{2}+y_{c m}{ }^{2}\right)+2 x_{c m} \sum m_{i} x_{i}{ }^{\prime}+2 y_{c m} \sum m_{i} y_{i}{ }^{\prime} \\
& \text { But } \sum m_{i} x_{i}{ }^{\prime}=0=\sum m_{i} y_{i}{ }^{\prime} \\
& x_{c m}{ }^{2}+y_{c m}{ }^{2}=d^{2} \\
& \sum m_{i}\left(x_{i}{ }^{\prime 2}+y_{i}^{\prime 2}\right)=I_{C M}
\end{aligned}
$$

Rotational Inertia for Solid Bodies

If we take very small mass δm tending to zero, then,

$$
\begin{aligned}
& I=\lim _{\delta m \rightarrow 0} \sum r^{2} \delta m \\
& I=\int r^{2} d m
\end{aligned}
$$

Rotational Inertial of Thin Uniform Rod

Figure shows a thin uniform rod of mass M, length L and area of cross-section A. we want to find out the moment of inertia I about an axis passing through its center O .

$$
\begin{equation*}
I=\int r^{2} d m \tag{1}
\end{equation*}
$$

If ρ is volume mass density, then

$$
\begin{aligned}
& \rho=\frac{d m}{d v} \\
& d m=\rho d v \\
& \Rightarrow d m=\rho A d x \\
& \Rightarrow d m=\frac{\rho A L}{L} d x \\
& \Rightarrow d m=\frac{M}{L} d x
\end{aligned}
$$

$$
\Rightarrow d m=\frac{\rho A L}{L} d x \quad \because \rho A L=M T \text { otal mass of the rod }
$$

Consider the rod is placed along x -axis, therefore:

$$
r=x
$$

The equation (1), will become:

$$
\begin{aligned}
& I=\int_{-L / 2}^{L / 2} x^{2} \frac{M}{L} d x \\
& I=\frac{M}{L} \int_{-L / 2}^{L / 2} x^{2} d x \\
& I=\frac{M}{L}\left|\frac{x^{3}}{3}\right|_{-L / 2}^{L / L} \\
& I=\frac{M}{3 L}\left[(L / 2)^{3}-(-L / 2)^{3}\right] \\
& I=\frac{M}{3 L}\left[\frac{L^{3}}{8}+\frac{L^{3}}{8}\right] \\
& I=\frac{M}{3 L}\left[\frac{2 L^{3}}{8}\right] \\
& I=\frac{1}{12} M L^{2}
\end{aligned}
$$

Rotational Inertia of Thin Uniform Rod about a Perpendicular Axis Passing
 Through Its Edge

Figure shows a thin uniform rod of mass M, length L and area of cross-section A.
We want to find out the moment of inertia I about a perpendicular axis passing through its edge. As

$$
\begin{equation*}
I=\int r^{2} d m \tag{1}
\end{equation*}
$$

If ρ is volume mass density, then

$$
\begin{aligned}
& \rho=\frac{d m}{d v} \\
& d m=\rho d v \\
& \Rightarrow d m=\rho A d x \\
& \Rightarrow d m=\frac{\rho A L}{L} d x \\
& \Rightarrow d m=\frac{M}{L} d x
\end{aligned}
$$

$$
\Rightarrow d m=\rho A d x \quad \because d v=A d x
$$

$$
\Rightarrow d m=\frac{\rho A L}{L} d x \quad \because \rho A L=M \text { Total mass of the rod }
$$

Consider the rod is placed along x -axis, therefore:

$$
r=x
$$

The equation (1), will become:

$$
\begin{aligned}
& I=\int_{0}^{L} x^{2} \cdot \frac{M}{L} d x \\
& I=\frac{M}{L} \int_{0}^{L} x^{2} d x \\
& I=\frac{M}{L}\left|\frac{x^{3}}{3}\right|_{0}^{L} \\
& I=\frac{M}{L}\left(\frac{L^{3}}{3}-0\right) \\
& I=\frac{M}{L}\left(\frac{L^{3}}{3}\right) \\
& I=\frac{1}{3} M L^{2}
\end{aligned}
$$

Rotational Inertia of (i) A Hollow Cylinder (ii) A Solid Cylinder about Axis of Symmetry (Cylindrical Axis)

Figure shows annular cylinder of mass M , length L with inner and outer radii R_{1} and R_{2}, respectively. Take a cylindrical shell of radius r and thickness $d r$.

Surface area of cylindrical shell $d s=2 \pi r L$
Volume of cylindrical shell $d v=2 \pi r L d r$
Mass of cylindrical shell $d m=(2 \pi r L d r) \rho$
Rotational inertia of the annular cylinder is

$$
\begin{aligned}
& I=\int_{R_{1}}^{2} r^{2} d m \\
& I=\int_{R_{1}}^{R_{2}} r^{2} \cdot(2 \pi r L d r) \rho \\
& I=\int_{R_{1}}^{R_{2}} 2 \pi \rho L r^{3} d r \\
& I=2 \pi \rho L \int_{R_{1}}^{R_{2}} r^{3} d r \\
& I=\frac{1}{2} \pi \rho L\left(R_{2}^{4}-R_{1}^{4}\right) \\
& I=\frac{1}{2} \pi \rho L\left(R_{2}^{2}-R_{1}^{2}\right)\left(R_{2}^{2}+R_{1}^{2}\right) \\
& I=\frac{1}{2}\left[\pi\left(\left.R_{2}^{{ }^{2}}\right|^{R_{2}}-R_{1}^{2}\right) \rho L\right]\left(R_{2}^{2}+R_{1}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mass element: } \\
& \text { cylindrical shell } \\
& \text { with radius } r \text { and } \\
& \text { thickness } d r
\end{aligned}
$$

Here $M=\pi\left(R_{2}{ }^{2}-R_{1}^{2}\right) \rho L=$ Mass of cylindrical shell

$$
\begin{equation*}
I=\frac{1}{2} M\left(R_{2}{ }^{2}+R_{1}^{2}\right) \tag{1}
\end{equation*}
$$

Rotational Inertia of A Solid Cylinder

For a solid cylinder, $R_{1}=0$ and $R_{2}=R$. By putting the values in equation (1), we have:

$$
\begin{aligned}
& I=\frac{1}{2} M\left(R^{2}+\theta^{2}\right) \\
& I=\frac{1}{2} M R^{2}
\end{aligned}
$$

Rotational Inertia of A Hollow Cylinder

For a hollow cylinder, $R_{1}=R_{2}=R$. By putting the values in equation (1), we have:

$$
\begin{aligned}
& I=\frac{1}{2} M\left(R^{2}+R^{2}\right) \\
& I=\frac{1}{2} M\left(2 R^{2}\right) \\
& I=M R^{2}
\end{aligned}
$$

Rotational Inertia of (i) A Disk (ii) A Hoop (Ring) about Cylindrical Axis

Consider a disk of inner and outer radii R_{1} and R_{2}, respectively. Let σ is surface mass density.

Consider a circular strip of radius r and breadth $d r$ with in the material.

$$
\text { Surface area of circular strip } d s=2 \pi r d r
$$

$$
\text { Mass of circular strip } d s=\sigma d s=2 \pi r d r \sigma
$$

Rotational inertia of strip is:
$I=\int r^{2} d m$
$I=\int_{R_{1}}^{R_{2}} 2 \pi \sigma r^{3} d r$
$I=2 \pi \sigma \int_{R_{1}}^{R_{2}} r^{3} d r$
$I=2 \pi \sigma \int_{R_{1}}^{R_{2}} r^{3} d r$
$I=2 \pi \sigma\left|\frac{r^{4}}{4}\right|_{R_{1}}^{R_{2}}$
$I=\frac{1}{2} \pi \sigma\left(R_{2}{ }^{4}-R_{1}^{4}\right)$
$I=\frac{1}{2} \pi \sigma\left(R_{2}{ }^{2}-R_{1}^{2}\right)\left(R_{2}^{2}+R_{1}^{2}\right)$
Each hoop has a fraction $d m / M$ of the total mass equal to its fraction of total area $\pi\left(R_{2}^{2}-R_{1}^{2}\right)$.

$$
I=\frac{1}{2}\left[\pi\left(R_{2}^{2}-R_{1}^{2}\right) \sigma\right]\left(R_{2}^{2}+R_{1}^{2}\right)
$$

Here $M=\pi\left(R_{2}{ }^{2}-R_{1}{ }^{2}\right) \sigma=$ Mass of cylindrical shell

$$
\begin{equation*}
I=\frac{1}{2} M\left(R_{2}^{2}+R_{1}^{2}\right) \tag{1}
\end{equation*}
$$

Rotational Inertia of A Solid Disk

For å solid disk, $R_{1}=0$ and $R_{2}=R$. By putting the values in equation (1), we have:

$$
\begin{aligned}
& I=\frac{1}{2} M\left(R^{2}+0^{2}\right) \\
& I=\frac{1}{2} M R^{2}
\end{aligned}
$$

Rotational Inertia of A Hollow Cylinder

For a hoop or a ring, $R_{1}=R_{2}=R$. By putting the values in equation (1), we have:
$I=\frac{1}{2} M\left(R^{2}+R^{2}\right)$
$I=M R^{2}$

Rotational inertia of a spherical shell

Fig. shows a thin spherical shell of radius R, mass m and surface mass density σ. In fig $\mathrm{R} \sin \theta$ is the radius of the circular ring, $\mathrm{d} \theta$ angular width and $\operatorname{Rd} \theta$ linear width of the ring.

Circumference of the ring $=2 \pi R$
Surface area of the circular strip ds $=(2 \pi R \sin \theta)(\mathrm{Rd} \theta)=2 \pi R^{2} \sin \theta \mathrm{~d} \theta$
Mass of circular strip $\mathrm{dm}=\sigma \mathrm{ds}=2 \pi R^{2} \sigma \sin \theta \mathrm{~d} \theta$

Rotational inertia of the circular strip about the diameter of the shell

$$
\begin{aligned}
& \mathrm{dI}=r^{2} d m=(R \sin \theta)^{2} 2 \pi R^{2} \sigma \sin \theta \mathrm{~d} \theta \\
& \mathrm{dI}=2 \pi \sigma R^{4} \sin ^{3} \theta d \theta
\end{aligned}
$$

Rotational inertia of the shell is

$$
\begin{align*}
I & =\int d I=\int r^{2} d m=\int_{0}^{\pi} 2 \pi \sigma R^{4} \sin ^{3} \theta d \theta \\
& =2 \pi \sigma R^{4} \int_{0}^{\pi} \sin ^{3} \theta \mathrm{~d} \theta \tag{1}
\end{align*}
$$

Here

$$
\begin{aligned}
\int_{0}^{\pi} \sin ^{3} \theta d \theta & =\int_{0}^{\pi} \sin ^{2} \theta \sin \theta=\int_{0}^{\pi}\left(1-\cos ^{2} \theta\right) \sin \theta d \theta \\
& =\int_{0}^{\pi}\left(\sin \theta+\cos ^{2} \theta(-\sin \theta)\right) d \theta \\
& =\int_{0}^{\pi} \sin \theta d \theta+\int_{0}^{\pi} \cos ^{2} \theta(-\sin \theta) d \theta \\
& =|-\cos \theta|_{0}^{\pi}+\left|\frac{\cos \theta}{3}\right|_{0}^{\pi} \\
& =(-\cos \pi-(-\cos 0))+\left(-\frac{1}{3}-\frac{1}{3}\right)=2-\frac{2}{3}=\frac{4}{3}
\end{aligned}
$$

Hence equation (1) will becomes:

$$
\begin{aligned}
& I=2 \pi \sigma R^{4} \cdot \frac{4}{3}=\frac{2}{3}\left(4 \pi R^{2} \sigma\right) R^{2} \\
& I=\frac{2}{3} M R^{2} \quad \text { where } M=\left(4 \pi R^{2} \sigma\right)
\end{aligned}
$$

Rotational inertia of a solid sphere about its diameter

Fig, shows a solid sphere of radius R , mass M volume mass density ρ.Take a spherical shell of radius r and width dr with in sphere.

$$
\begin{aligned}
& d I=\frac{2}{3} r^{2} * \text { mass }=\frac{2}{3} r^{2} * d m \\
& \frac{\text { mass of shell }}{\text { mass of sphere }}=\frac{\text { volume of shell }}{\text { volume of sphere }} \\
& \frac{d m}{M}=\frac{4 \pi r^{2} d r}{\frac{4}{3} \pi R^{3}} \\
& \mathrm{dm}=\frac{3 r^{2}}{R^{3}} M d r
\end{aligned}
$$

So

$$
\begin{aligned}
& d I=\frac{2}{3} r^{2} * \frac{3 r^{2}}{R^{3}} M d r \\
& d I=\frac{2 M}{R^{3}} r^{4} d r
\end{aligned}
$$

The moment of inertia of the sphere is the sum of moment of inertia of the various shells.

$$
\begin{aligned}
I & =\int d I=\frac{2 M}{R^{3}} \int_{0}^{R} r^{4} d r \\
& =\frac{2 M}{R^{3}}\left[\frac{R^{5}}{5}-0\right] \stackrel{2}{5} M R^{2,}
\end{aligned}
$$

Hence

