B. Sc. Physics (H.R.K) Chapter 50: The Wave Nature of Matter

THE WAVE NATURE OF MATTER

50.1 Wave Behavior of Particles

The electromagnetic radiations like light, X-rays.gecan produce the phenomenon of
interference, diffraction and polarization due toeit wave nature. But under certain
circumstances they can produce photoelectric effext Compton Effect which is the
evidence of their particle nature. It means thattebmagnetic radiations have dual nature;
wave as well as particle nature.

In a similar way the particles like electrons, mens and protons etc. must have dual
nature. If the beam of electrons accelerated thr@gnown potential difference ‘V’, is made
to fall on a double slit and after passing throtlgdhdouble slit, they are allowed to strike on a
fluorescent screen. It has been observed thatrpaitdained on the screen is similar to the
pattern of interference of light.

If the double slit is replaced by a circular apegtuthen the diffraction pattern of
electrons is similar to that of light was observé&de diffraction of electrons, similar to that
of light, can also be observed by using a strdiiglet edge. So the wave nature of particles
like electrons, protons, neutrons, even .atoms amolecules have been observed
experimentally.

50.2 Double Slit Experiment

In Double slit experiment, a filament produces aagpof electrons which are
accelerated through a potential difference of 50 A¥ter passing through double slit, the
electrons produce a ‘visible interference pattemoréiscent sucreen, which can be
photographed.

50.3 De Broglie Wavelength
In 1924, Louis De Broglie proposed that a partiolest also behave like wave, in the
similar way, wave behave like particles. Accordiogyuantum theory of light, the energy
of a photon is:
E=hv W -—mmmmmmee Q)

Whereh is the Plank’s constant amds the energy of photon.

According to Einstein, the energycorresponding to the massto a patrticle is described as:
E=mc? - (2)

Wherec is speed of electromagnetic radiations.

Comparing equation (1) and (2), we get:
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mc? = hv
hv
mc :?
Butmc = p = Momentum of Photon.
_h
P=- )
Asc =vl ===
c A
_h
P=7

Here A is the wavelength of wave associated with moviagige. Such waves are called

De Broglie waves or matter waves and are descblyetle relation.

h
A=-—

p
50.4 De Broglie Hypothesis

The De Broglie equation = % = % describes the wave behavior of particles. As the

value of Plank’s constarit is very small and is of the order ef 10734, the wavelength
associated with ordinary object (e.g., A movingnisnball) is so small and is difficult to
observe. But for the small objects like electromsl aeutron etc., the wave behavior of
particles is dominant. It is because of the reakah mass of electron and neutron are very
small as compared to an ordinary tennis-ball.
50.5 The Davison-Germer Experiment

The De Broglie hypothesis. was confirmed by Davismal Germer. The schematic

diagram of Davison and Germer experimental setgpasvn in the figure.

Electron gun

Electron
detector

incident

beam — Scattered electron

beam

Metal target (crystalline Nickel)

The electrons from a heated filament F are acdelérhy an adjustable potential
difference V. The beam of electrons is allowedaibdn a nickel crystal. The diffracted beam

of electrons is detected by a movable detectoiffarent values of angles.
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It is observed that there is a strong diffractedrbeobtained. fokp = 50° andV =
54 volts. This situation is similar to the diffraction oiglht ;produced by the diffraction
grating.
In nickel crystal, the atoms are arranged in dadimrder; hence the crystal surface
acts like a diffraction grating. The first order ximaa is obtained at an angie= 50°. The
wavelength associated with electrons can be detexrby using the equation:

mA = Dsin@
Herem =1 for the first order diffraction peak
Inter-planner spacing for nick®l = 215 pm
Angle of diffractiongp = 50°

= 1x1=215x%x 10712 X sin 50

= 1 =165pm
The wavelength of the matter wave, can be findoguising de Broglie hypothesis:
h
A=—
mv
The kinetic energy of the electron is:
2Ve
—-mvi=Ve=>v= |[—
2 m
h
= A=

2Ve
m —
\/ m

By putting the value of constarism, e andV = 54 volts, we have:
A=166.4pm
Hence the value of de Broglie wavelength is in goagreement with the

experimentally observed wavelength associated lg@btrons.
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50.6 G. P. Thomson Experiment

In 1927, G. P. Thomson (son of J. J. Thomson) pad an experiment and
confirmed the de Broglie equation of matter waves.

He obtained a fine beam of electrons acceleratedigih a potential difference of 15
kV and made it to fall on a target which was netragle crystal, but it was made up of a large
number of tiny, randomly oriented crystallites (m@red aluminum).

A photographic plate was placed parallel to thgaton which the diffraction pattern
was obtained. It was observed that the diffracpatiern of electrons was very similar to the
diffraction of X-rays. As the diffraction is a wayeoperty, so the wave nature of electrons
was confirmed experimentally.

The wavelength of the matter waves associated tvélelectrons can be determined
by using the Bragg’s equation:

2d sinf =mA e Q)

Where d is the inter-planner spacifgs the glancing angle and m is the order of dfficn.
If V is the potential difference through which tekectrons are accelerated, then the

kinetic energy of electrons is:

1 iy
Emv =Ve
2Ve
v= [—
m
According to de Broglie hypothesis
h
A=—
mv
_m._ h
adhy b 7

m

G. P. Thomson observed that the de Broglie wavétemagsociated with moving
electrons was good in agreement with experimentadiserved value, that was find out by
using Bragg’s law.

The atomic structure of solids are studied theralifion beam of electrons. The
electrons are less penetrating than X-rays, soetbetrons are used to study the surface

morphology of solids.
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50.7 Waves and Particles

The evidence of the matter is wave like is venorglr On the other hand, the
evidence that a matter is particle like is equaBystrong. In these situations, the description
of wave as well as the particle nature of matter tegmained a challenge for the scientists.
One property that we like for the particles (evantiples with the wave like nature) to have
the ability to be localized. For example, an elactin an atom of 0.1 m diameter is localized
in certain region of space. On the other hand, wewannot be localized in space and time
like a particle.

The amplitude of a matter wave carries informatabout the location of the particle.
The wave has the large amplitude where the partidikely to be found, and it has the small
amplitude where the particle is unlikely to be fduif the wave has the constant amplitude
throughout a given region of space, the partickeqgsally likely to be found anywhere in that
region. If the amplitude of the matter wave is z@ra specific region, then the particle never
found there.
50.8 Localizing Wave in Space

Consider a wave moving along x-axis extends fiom —oo to x = oo. This wave has
a shapely defined wavelengffy. There is nothing about this wave that will suggbe
localization in space that we associate with theigga. Such a wave has no beginning, no
end , and no such distinct mark. If this wave wascribing a particle, we would say that the
particle could be found anywhere betweer= —oo to x = o0, and it is completely un-
localized.

Often it is convenient to work, not with the waveih, but with the wave number

2T

k = 2/1—” For the present case, the wave has a sharplyediefvave numbek, = o

On the other hand, a wave packet is associatedamitioving particle. Many waves
adds up'to make a wave packet of length and adds to zero everywhere else. Thus for the
present case, the particle is localized in spahe.particle is likely to be found in the region
of sizeAx and unlikely to found outside that region.

This wave packet no longer contains a single wawaberk, but rather a spread of
wave numbers centered abadty. Let Akis the rough measure of the spread of wave
numbers. The product @k andAk is proves to be of the order of unity:

Ax Ak =1
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This expression tells that the smalter value ofAx, the larger must be the range of
wave numberak. Conversely, the narrower the spreadik the less localized the patrticle
will be.

50.9 Localizing Wave in Time

A patrticle is localized in space as well as in tirSBe, the space variable x must be
replaced by time variable t (as the wavelengghby the time period’,). And the wave
numberk, must be replaced by the angular frequesagy

Similarly, the spread of wave numbé&k must be replaced byww- and the
displacemeni\x by the interval of timét. So we have

Aw At = 1
It means that the produstitv At is of the order of unity.
50.10 Heisenberg’s Uncertainty Relationship
Let the motion of the particle is along x-axis,rteecording to the de Broglie Hypothesis:
Lo
Px
The angular wave number is
B
) "

Dx
Also
2T
2T
Ak = TApx

For a particle, we have
21

Ax <7Apx) =1

h

Ax Ap, = o

If -the 'motion of the particle depends upon the eéhemordinates x, y, z, the

generalizing above relation, we have:

h
Ax Ap, = o

h
Ay Ap, = o

Az A h

Z pZ ~ 27_[

These are known as Heisenberg's Uncertainty Relstips. According to these
relationships:
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It is not possible to determine both the positiod a
the momentum of a particle with ultimate precision.
The widthAx of the wave packet indicates the probable locabibthe particle, and
Ap, is the range in momentum. So, the Uncertaintyggule may also be stated as:
A particle cannot be described by a wave packethith
the position and momentum have arbitrary small es1g
It means that due to the wave nature, the exadtigmox of a particle cannot be
determine, but it will be in the randex.
Similarly, the true or exact momentum of the péetic, cannot be determined, but it
will be in the range olp,.
50.11 Uncertainty Principle and Single-Slit Diffradion
Consider the experiment of diffraction of electrdmg single slit. Let a beam of
electrons moving with speer, passes through a single: slit -of widily. The diffraction

pattern is obtained on the screen B as shown ifighee.

Momentum uncertainty in 3 — Firsz dark fringe
the y component = Midpoint
- :'3 of central
Ay § Avy };,: breht Iringe
Howng = ﬁ( :"
electon LU Vo =
=l X = = = = = o o o o 0 o o ] &
s :
-3 =
Singe shit E
A \"“ % Frrsl dark fringe
Screen —}_

B

Due to.the wave nature, the electron beam bendiseoeither side of the central point
producing the diffraction pattern. Létw, is the uncertainty in the component of velocity

along y--axis for the first minimum, then we have
tan g = Ly
Vo

Consider the angle is very small, thetan 6 ~ 6:

Avy

0=—=2 e (1)

Vo
In case of location of the first minimum of difftaan, we have:
Dsin@ = mA
Here m=1and i is very small, therin 6 ~ 0
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DO = A

Ay 6= A
a
Ay
Comparing equation (1) and (2),

Av, 4
Vo - Ay
Avy, Ay = Av,

According to the de Broglie hypothesis:= g =

h
= Avy Ay = (mv )vo

0
= mAv, Ay = h
= Ap, Ay = h
This is the form of uncertainty principle, which yrae stated as:
The product of uncertainty in momentum and uncetyan position of a particle
is of the order of plank’s-constaht
It means that, if the position of the particle isde more and more precise, the
uncertainty in the momentum of the particle incesasnd vice versa. On other words,
It is not possible to determine both the positiod ¢he momentum
of a particle with unlimited precision.
50.12 The Energy-Time Uncertainty Relationship
The wave nature of a particle can be representdtidoyvave packet having angular

frequencyw. So the spread of angular frequeey and the time interval are related as:

Aw At =1 - 1)
Einstein’s photon equation is
E=hv
E
V= E
The uncertainty in the frequency of the matter vgave
Ay = AE
T h AE
As Aw = 2mAv = 2n7, put in equation (1):
AEAt ~ =~

21

This is another form of Uncertainty principle. laynbe stated as:
It is not possible to determine both the energy tame co-ordinates with ultimate precision.

9
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50.13 The Wave Function

The wave nature of a particle can be representedadwe functiomp, which is the
function of space and time co-ordinates. The beahadithe particle in terms of wave can be
determined by knowing the wave function for eveoynp in the space and for every instant
of time:

Y =9,y 2t)

Consider a matter wave associated with a particheass m travelling in the direction
of increasing x and on which no force acts, soedalfree particle. To describe the
displacement associated with such a wave, the Aarerphysicist ErwinSchrodinger
introduced a quantityp(x,t) for such a free particle, called wave function.eTiave

function for a free particle moving in the directiof increasing x is given by:
Ylx,t) = Py eltxmed

Herey, is the amplitude of the wave, (= 27") is the wave number anrd(= 2rf)

is the angular frequency. As this wave functiontaors the imaginary numbé¢= v—1), so
it a complex quantity.
The physical interpretation of the wave functionsvggven by the German Physicist
Max Born. He asserted that physical ‘meaning shookdbe given top itself, but to the
product ofy) and its complex conjugate”. Specifically, Born postulated:
The productpy*dx gives the probability that the particle
in question will be found between positioandx + dx.
In quantum mechanics, we cannot say where a particlve can only say where it is
likely to be. We call the produgiy* the probability density, symb#(x), so that
P(x) =y’
Even though the wave functiap(x,t) is a complex quantity , but the probability
density is always a real number.
For the free particle, the probability density esdribed as:
P(x) = [lpo ei(kx_wt)][lpo ei(kx_wt)] = |1/)0|2
Thus the probability density P(x) of a free pa#i® constant and is independentcof
or t. Thus we conclude that the particle can be finith wqual probability, at any point along
the x directin fromx = —oo to x = 400,
This inability to pin down the location of a frearficle is in complete accord with

Heisenberg Uncertainty principle.
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50.14 Schrodinger’s Equation

The Schrodinger equation is used to find out thpression of wave function of
moving particle in a specific direction. As it iestribed earlier, that a wave function is the
function of both space and time variables. So wewate the wave function for the particle
moving alongx — axis as:

P(x,t) = P)P(t)

That is, the wave function of a particle can becdbsd as the product of .space
dependent wave functiot(x) and time dependent wave functigrft). In the rest of the
chapter we will focus our attention to the spageetielent portion of wave function.

Now the Schrodinger’s equation for a particle tiéweg in the x —direction is:

h?  d*p(x)
8m?m  dx?

whereE is the total energy of the particle alix) is its potential-energy.

+ Uy (x) = EP(x)

50.15 Schrodinger’s Equation for a Free Particle

If the particle is a free particle, its potentiakegy U(x) is a constant which we can

take to be zero for all values of The total energy E of the moving particle mustdiesn

2
entirely kinetic. That is, in which we must have= K = ;’—m, in whichp is the momentum of

the particle. With this assumption, the Schrodiifggequation becomes:

R dhp(x)
C 8m2m dx? = EpC)

d*(x).~ 8m’mE

T Tz v
8m2mE
PUTS= = k% oo (1)
wherek is the wave number.
d*P(x)
- dxz - k l/)(x)
d*P(x)
= 1 +k“yP(x) =0

2
Putting% = D?, we have

= DY) +k*P(x) =0

= (D% +k2)Y(x) =0
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For characteristic solution, we have:

D?+k*=0
D% = —k?
D =+k

The characteristic solution of this equation wat b

P(x) = Ae’*™* + Be~tkx . 2)
As the particle is moving along positive x-directi®o the equation (2) will become:
P(x) = Aet* s 3)

where A is the amplitude of the wave. The expressiequation (3) is wave function for the
free particle moving along — direction.
Probability Density
For the free particle, the probability density Fiédlescribed as:

P(x) = [A e**][A e7™¥] = A2
Thus the probability density of a free particleds constant and is independentofr ¢.
Thus we conclude that the particle can be find wgnal probability, at any point along the
x-directin fromx = —oo tox = +oo.
Wave Number

From equation (1), we have

8m’mE
k% =
hZ
2
For the free patrticle, the-total energy= K = Zp—m, in which p is the momentum of the
particle.
2 2 2 2,,2
:>k2:81r mE:87T mp :47r p
h? 2m h? h?
2T p 21
=k =—=
h " /p)

Using de Broglie hypothesis, we have

2T
=k =—
A
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50.16 Particle in a Well or One Dimensional Box
Let a particle of mass m is moving in a one-dimenai box of length.. Consider
that the particle moves back and forth along x-d»@sveen the perfectly hard and infinite
high walls of the box, fromx = 0 to x = L, and no force acts on it during its motion. The
particle suffers elastic collisions and its totaérgyE' remains constant.
As there is no force acting on the patrticle, themef
av

F = F 0 \\
= I = constant C'b

For convenience, we take the potential energy efgarticle a;\éé{o, el =0,
inside the box. Since the walls of the box arenitdly (~

high, therefore the potential energy of the pe&ti(:
outside the box is infinite. ‘

Since the particle cannot have an infinite amount o -

energy, so it cannot exist outside the box. Heh ?unction of the particig(x) is

zero forx < 0 andx > L. (be
h2  d%(x) @.
© 8mZm dx? Ep(x) ‘\‘\

oo S myo -0

d*y(x) 8m*m (b'
Tt Elp@o
Putg”Z;”E = k2 @:& --------------- 1)

N

Putting: 2 we have

&Q D2 (x) + k2P(x) = 0
— D2+ k)PY(x) = 0

For characteristic solution, we have:

D*+k*=0
D? = —k?
D =+k

The characteristic solution of this equation wet b
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P(x) = Ae™™ + Ao @ ¥
Y(x) = A;(coskx + isinkx) + A,(coskx —

i sin kx) n=3 (_\___7/__-}

Y(x) = (A1+ Ay) coskx + (iA;— iA,) sinkx --

_________ (2) n=2 4____\__;_7

A+ A, =B
Thus equation (2) will become: 0 L
Y(x) = Asinkx + B coskx ~— i O pep
--------- ©) N\ /\ /\
n=3 Pe——dd a3 1

Where the constants A and B can be evaluated fitoen

boundary conditions, which are: /\ /\

() Yp=0atx=0 nm2 LN
And (i) Y=0atx=1L %"} ) -

@

Applying the £ boundary condition, the equation f&b

(b, 0 L
B=0 @,
Applying the 2% boundary condition: .

N>

sinkL =0 YV
r

kL = nm, where n is an intege

f="m Jo.J— @)

L
Thus equation (3) will b e:

Y(x) = Asi % ----------- (5)

The so P@fof the wave function for the partiolea box, since we have not yet
determine constant A. for this purpose, weanae of the normalization condition:

§\f/)(x)|2 dx =1
FQ& resent case:
L
[ dx =1
0

L
= jAz sin? (%x) dx =1
0

L

nm
:Azj[l—cos(Tx”dx: 1

0
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2 2
= A= |-
L

Thus the equation (4) will become:

2 nm
tp(x)z\/;sme

Energy of the particle in the Box
From equation (1) and (4), we have:
8n’mE n’n?
hz 12
n?h?

_ MR 6)

n T gmi2

h? . .
Forn=1,E; = p—t Thus the equation (6) will become:

ETl = anl
This shows that the particle in the box have discvalues. -Hence, the energy of the particle

in the box is quantum box is quantized.

50.17 The Potential Step and Barrier Tunneling

When a particle is moving in a-region of a consgawtential suddenly comes across
another region of different constant potential, toenmon boundary of the two regions is
called potential step. In the figure, the heighttloé potential step i¥,, say atx = 0.
According to the classical physics, the particlenc from region |, approach the potential
barrier of potential step with energy,> V, and are slow down by the forée= —Z—Z, SO
that the kinetic energy is converted into potenéiaérgy. If the particles have sufficient
energy to overcome the barrier, then there wiltdtal transmission. And £ < V,, then the
particles are stopped by the barrier and their omowill be reversed. In this case, there is the

total reflection of the beam.

: : V(x)
Quantum mechanically, for this
potential step, we have the potenti Vo
function as: Region &

V(x)=0forx<0 Region I
V(x)=0forx=0 V(x)=0

For the present case, the Schroding | x

0 L
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wave equation will be:

h*  d*P(x) B
“8nzm a2 T VY& =Ep(x)
h* d*Px)

8nzm dpz TIET V@) =0

d?y(x) , 8m?m

= TEE L ERE+ VERE) =0 e ()
Case-1E >V,
i)  Region-1

Let the particles with total energy E moves fromgioe-1 to region-1l along-x-axis. In

region-1,V(x) = 0. Therefore, the equation (1) will become:

d?y,(x) . 8m?’mE

wherek is the wave number.
d*;(x)
dx?
The characteristic solution of this equation wét b
P, (x) = Adetfr* 4 Be~tkax A (3)

The first and the second term of equation (3) regme the incident and reflected

+ kfllh(x) =0

particles respectively.
i)  Region-Il
For region-11,V (x).=V,. Therefore, the eqution (1) for the case of regdlomill be:
d*y,(x) 8m’*m
dx? + h?

8m2m(E+Vy)
S mizT Vo) Hz g :k% """""""""" (4)

[E = Vol (x) =0

Put

wherek, is the wave number.
dzlpz (x)
dx?
The characteristic solution of this equation wat b
P,(x) = Cetke* 4 pe~tkex (5)

In equation (5), the first term represents thednaitted wave. And the second term

+ k3p,(x) =0

represents a wave coming frohweo in the negative direction. Clearly, fer> 0, no particle
can flow to region-l and D must be zero.

Therefore, the equation (5) becomes:
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Po(x) = Cetf2* s (6)
iii)  Continuity Statements atx = 0
The continuity ofp implies thatp; =y, atx =0

= A+B=C = e (7)

Also the continuity‘jl;’—x1 = %2 atx =0
=k (A—B)=k,C = e (8)
Putting value of” in equation (8) from equation (7):
ki(A—B) = k,(A+ B)
= kyA — k4B = k,A + k,B
= A(ky — k3) = B(ky + k3)

(k1=k5)

= B =
(k1+k2)

A e ©)

Putting value of B in equation (7), from equati®: (

(k1 — k3)
C=A+—-—"7"="A
* (ky + k3)
(2K Ny i
¢= (k1+k2)A (10)

It should be noted that A is the amplitude of imcitt beam, while B and C represent the
amplitude of the reflected and transmitted beasspectively.
Since the probability density associated with aevaunction is proportional to the square of

the amplitude of that function, we can represeatdarrier transmission coefficient as:

|A]2
And a reflection coefficient for the barrier suraatx = 0 as:
_|BJ?
|A}?
Case-2E <V,
Region-I.

WhenE is less thar,, then solution of Schrodinger wave equation fgiae-I is:

d?yP,(x) . 8m®*mE
dxlz + h2 1101 (x) = 0

8m2mE
hZ

Put

2 e — (11)

wherek is the wave number.

— dzlpl (x)

dx? + k,%lpl(x) =0

A
O
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The characteristic solution of this equation wet b

P,(x) = Alet*1*  Ble~tknx (12)
The first and the second terms corresponds tanthident and reflected beams respectively.
Region-II.

WhenE is less thar¥,, then solution of Schrodinger wave equation fgioe-I11 is:
d?y,(x) N 8m?m

dxz hz [E - VO]II)Z(x) =0 \'/\/
AsV, > E, therefore the Schrodinger wave equation will Ineeo Cb
d*y,(x) 8m’*m 6

dx? n2 [Vo — E Jp2(x) = 0 /\/\

Putw e — \/b(ls)
wherek is the wave number. 070
d* P, (x) 0
= 74‘](21/)2(?6) =0
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The characteristic solution of this equation wat b ‘\/\

YP'y(x) = C'ek2* + D'e kX é ------------ (14)

The first and the second term{gr esponds to ribelent and reflected beams
respectively. The equation 13 descrv
move through a barrier. 6

hat treadways be a probability for a particle to

The wave function is exponential V(x)
withinthe barrier(0 <=x<1I)..
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