
Physics (HRK)   Chapter 8: Conservation of Energy 

26 
Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera 

 

CONSERVATION OF ENERGY 

 

We come across two types of forces in our daily life: 

 Conservative forces 

 Non-conservative forces 

Conservative Forces 

If the work done by the force on the body depends upon the initial and final 

locations and is independent of path taken by the body between the two points, then such 

a force is a conservative force. 

Or 

If the net work done by the force on the body along the close path is zero, then 

such a force is called conservative force. 

Conservative forces are also distinguished by the ability to store energy only due 

configuration of the system. This stored energy is called potential energy.  

Examples of Conservative Forces 

The Spring Force 

Consider a block of mass m attached to a spring of spring constant k. The block is 

capable of moving on horizontal 

frictionless table. 

Figure 1. The external agent has 

displaced the object from mean position 

(x = 0) to extreme position (x =  +A). 

Figure 2. The external agent is suddenly 

removed at 0t   and the spring begins 

to do work on the block. 

As the object moves from x = +A to       

x = 0, the spring does work 2

1

1

2
W kA . 

Figure 3. When the spring moves from 

0x   to x A  , the spring force 

reverses and spring acts to slow down 

the block and does negative work. 
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1
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W kA   

Figure 4. The object moves from spring 

moves x A   to 0x  , and spring does work 2

3

1

2
W kA . 



Physics (HRK)   Chapter 8: Conservation of Energy 

27 
Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera 

 

Figure 5. The object moves from 0x   to x A  . The spring does negative work 

2

2

1

2
W kA   (as the block slows down). 

The total work done by the spring force during the complete cycle (close path) is zero: 

Total work 1 2 3 4TW W W W W     

2 2 2 21 1 1 1
0

2 2 2 2
TW kA kA kA kA

   
         

   
 

So, the spring force is conservative force. 

Spring Force is Independent of Path Followed 

Consider of a mass spring system. The block moves from x A   to 
2

A
x    along two 

different paths. 

Path 1. The block moves directly from x A   to 
2

A
x   . The work done by the spring: 

2
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Path 2. From x A   to x A   and from x A   to 
2

A
x    
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Conclusion: As 1 2W W , so work done is independent of path followed. 

The Force of Gravity 
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Consider a ball of mass m is thrown upwards by an external agent. As the ball 

rises to height y h , the force of gravity mg  acts downwards while the distance covered 

is upwards. So the work done by the earth on the body is mgh . The ball momentarily 

comes to rest and then falls from y h  to 0y  , the work done by the gravity is mgh . 

The total work done along the round trip 0mgh mgh    . So the force of 

gravity or gravitational force is a conservative force. 

From the criterion that work done on a system by a conservative force along a 

closed path is zero, we have: 

1 2

. . . 0

B A

A B
path path

F d s F d s F d s      

1 2

. .

B A

A B
path path

F d s F d s    

1 2

. .

B B

A A
path path

F d s F d s   

This shows that the work done on a system by a conservative force between two 

points is independent of path. 

*Electrostatic and Magnetic forces are conservative forces, 

while the frictional force is an example of a non-conservative force. 

Potential Energy 

Potential energy is the energy of the configuration of the system and can only be 

defined for conservative forces such as spring force or the force of gravity. 

When configuration of a system undergoes a change, work is done by the 

conservative force. Thus 

U W    

The change in potential in a process is equal to the negative of work done by the 

conservative force.  

If E is the mechanical energy of a conservative system, then by law of 

conservation of energy: 

U K E   (constant) 

Or   0U K    

Where U  and V are the potential energy and kinetic energy of the mechanical system. 
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One Dimensional Conservative System  

When a one dimensional conservative force F(x) acts upon a body and as the 

result the object moves from 0x  to x , then the change in P.E. is given by the expression: 

0

( )

x

x

U W F x dx         ----------   (1) 

Equation (1) can also be described as: 

0

0( ) ( ) ( )

x

x

U x U x F x dx      ----------   (2) 

If 0x  is an arbitrary reference point, then potential energy function U  can be 

obtained. If 0x  is at infinity: 0( ) ( ) 0U x U   , then the resulting function ( )U x can be 

used to calculate the P.E. at the particular points in motion, say 1x  and 2x . 

In moving from 0x  to x , the velocity of the particle changes from 0v  to v . Hence 

according to the Work Energy Theorem, the work done by the force is: 

2 2

0

1 1

2 2
W K mv mv      

From equation (1),  

U W    

2 2

0 0

1 1
( ) ( )

2 2
U x U x mv mv

 
     

 
 

2 2

0 0

1 1
( ) ( )

2 2
U x U x mv mv      

2 2

0 0

1 1
( ) ( )

2 2
U x mv U x mv     

21
( )

2
U x mv E      ----------   (3) 

Where E is the mechanical energy of the system which depends upon depends 

upon the initial position 0x  and initial velocity 0v ; which have the definite values. So it is 

constant during motion i.e., the mechanical energy E is constant. 

Differentiating equation (2), we have: 

 
0 0

0( ) ( ) ( ) ( )

x x

x x

d d d
U x U x F x dx F x dx

dx dx dx
       

( )
( )

dU x
F x

dx
     0( )

0
dU x

dx
 as 0( )U x  is a constant. 

( )
( )

dU x
F x

dx
  

Thus 

“Potential energy is a function of position whose negative derivative gives force”. 
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The Spring Force 

Consider a mass-spring system. When the block is displaced a distance x  from 

0x , the potential energy of the system is given by: 

0

0( ) ( ) ( )

x

x

U x U x F x dx      

Initially, the mass is at mean position i.e., 0 0x  , so 0( ) 0U x  . And ( )F x kx   

0

( ) ( )

x

x

U x kx dx      

21
( )

2
U x kx    ----------   (1) 

When the spring is compressed or stretched (i.e. either x is negative or positive), 

we have same results. 

Differentiating equation (1), we have: 

2( ) 1

2

dU x d
kx kx

dx dx

 
  

 
 

( )dU x
kx

dx
    

( )
( )

dU x
F x

dx
   

Suppose the block is stretched from 0x  to a distance mx , then the energy stored 

in the mass spring system is 21

2
mkx . As the block is momentarily at rest, so its K.E = 0 . 

Hence the entire energy is its P.E. 

21

2
mE kx  

From this, the instantaneous velocity is: 

2 2( )m

k
v x x

m
   

The speed of the bock is maximum at 0 0x x  : max 0 m

k
v v x

m
   

 The speed of the bock is zero at mx x : 0v   
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The Gravitational Force 

For the ball-earth system, we choose 0 0y   as a reference point at the surface of the 

earth, therefore 0( ) 0U y   

Using relation  

0

0( ) ( ) ( )

y

y

U y U y F y dy      

Putting the values 0( ) 0U y   and ( )F y mg   

0

( ) ( )

y

y

U y mg dy      

( )U y mgy  

Differentiating, we get: 

  
( ) ( )dU y d mgy

mg
dy dy

   

  
( )

( )
dU y

mg F y
dy

     

  
( )

( )
dU y

F y
dy

   

Using the law of conservation of mechanical energy (in y-direction), we have: 

21
( )

2
mv U y E   

Putting the values ( )U y mgy  and 2

0

1

2
E mv : 

2 2

0

1 1

2 2
mv mgy mv   

2 2

02v gy v   

2 2

0 2v v gy   

This is the expression of velocity of block at height y in earth’s gravitational field. 

One Dimensional Conservative System (Energy Method) 

At each point, the force xF  on the any object is equal to the negative of the slope of the 

U(x) curve:  

x

dU
F

dx
   

Points 1x and 3x are stable equilibrium points. At each of these points, xF  is zero 

because the slope of the U(x) curve is zero. When the particle is displaced to either side, 

the force pushes back toward the equilibrium point. An analogous situation is a marble 

rolling around in a round-bottomed bowl. We say that at points 1x and 3x  is a point of 
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stable equilibrium. More generally, any minimum in a potential-energy curve is a stable 

equilibrium position. 

 

 

 

The slope of the U(x) curve is also zero at points 2x and 4x , and these are also 

equilibrium points. But when the particle is displaced a little to the right of either point, 

the slope of the U(x) curve becomes negative, corresponding to a positive xF  that tends 

to push the particle still farther 

from the point. When the particle is 

displaced a little to the left, xF  is 

negative, again pushing away from 

equilibrium. This is analogous to a 

marble rolling on the top of a 

bowling ball. Points 2x and 4x  are 

called unstable equilibrium points; 

any maximum in a potential-energy curve is an unstable. 

the direction of a conservative force The direction of the force on a body is not 

determined by the sign of the potential energy U. Rather, it's the sign of x

dU
F

dx
  that 

matters.  

If the total energy is 1E  and the particle is initially near 1x , it can move only in 

the region between ax and bx  determined by the intersection of the 1E  and U graphs (Fig. 

a). Again, U cannot be greater than E) because K can't be negative. We speak of the 
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particle as moving in a potential well, and ax and bx  are the turning points of the 

particle's motion (since at these points, the particle stops and reverses direction). If we 

increase the total energy to the level 2E , the particle can move over a wider range, from 

cx and dx . If the total energy is greater than 3E , the particle can "escape" and move to 

indefinitely large values of x. At the other extreme, Eo represents the least possible total 

energy the system can have.  

Sample problem 4. 

The potential energy function for the force between two atoms in a diatomic molecule 

can be expressed approximately as: 

12 6
( )

a b
U x

x x
   

Where a and b are the positive constants and x is the distance between the atoms. Find (a) 

the equilibrium separation between the atoms. (b) The force between atoms and (c) 

minimum energy necessary to break the molecule apart (i.e., to separate the atoms fron 

equilibrium position to x  ). 

Solution 

The plot of potential energy ( )U x verses separation x is shown in the figure a and the plot 

of force F  verses x as shown in the figure b. 

 

Let the equilibrium occurs between the atoms at mx x at which ( )U x is minimum and is 

found from: 

0

mx x

dU

dx 

 
 

 
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12 6
0

d a b

dx x x

 
   

 
 

 
13 7 13 7

612 12 6
0

ba a b

x x x x

   
       

  
 

Multiplying above equation by 
7

6

x
: 

6

2
0

1

a b

x

 
  

 
 

6

6

2 2a a
b x

x b
     

1

62
m

a
x

b

 
  
 

 

The is the require expression for equilibrium separation between the atoms of diatomic 

molecule. 

(b). The force corresponding to the minimum potential energy is: 

12 6 13 7

12 6dU d a b a b
F

dx dx x x x x

 
       

 
 

This force is positive between 0x  and mx x , the atoms are repelled from one another 

and the force is directed towards increasing x.. When the force is negative from 

mx x and x  , the atoms are attractive to one another (this force is directed towards 

decreasing x).  

At mx x , the force is zero. This is the equilibrium point and is stable equilibrium. 

 

(c). The minimum energy required to break the molecule into separate atoms is called 

dissociation energy Ed we can separate the atoms to x   when 0U  , whenever 

0E  . The minimum energy required corresponds to 0E   i.e., the atoms are infinitely 

separated ( 0U  ). The energy added to the molecule in its equilibrium state to rise its 

energy from negative value to zero is called its dissociation energy Ed. 

( ) 0m dU x E   

12 6
( )d m

m m

a b
E U x

x x
      

Substituting 

1

62
m

a
x

b

 
  
 

, we get: 

2

4
d

b
E

a
  
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Two and Three Dimensional Conservative Systems 

In three dimensions, the potential energy can be written as ( , , )U x y z . So the equation 

0

0( ) ( ) ( )

x

x

U U x U x F x dx      in three dimensions is  

0 0 0

yx z

x y z

x y z

U F dx F dy F dz        

Where U  is the change in potential energy for the system when the particle 

moves from point 0 0 0( , , )x y z to ( , , )x y z . xF , yF  and zF  are the components of 

conservative force ( ) ( , , )F r F x y z . 

The relation 2 2

0 0

1 1
( ) ( )

2 2
mv U x mv U x   in three dimensional motion is: 

2 2

0 0 0 0

1 1
( , , ) ( , , )

2 2
mv U x y z mv U x y z    

In vector notation: 

0 0 0

1 1
. ( ) . ( )

2 2
mv v U r mv v U r    

Where 2 2 2. x y zv v v v v   and 2 2 2

0 0 0 0 0. x y zv v v v v    

In terms of mechanical energy: 

21
( , , )

2
mv U x y z E   

Also 

x

dU U
F

dx x




     

y

dU U
F

dy y




     

z

dU U
F

dz z




     

Putting values in equation  

ˆˆ ˆ( ) x y zF r F i F j F k    

ˆˆ ˆ( )
U U U

F r i j k
x y z

  

  
     

ˆˆ ˆ( )F r i j k U
x y z

  

  

 
    

 
 

( )F r U   

So, the conservative force is equal to the negative of gradient of potential energy 

( , , )U x y z . 
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Conservation of Energy in System of Particles 

Energy can be transformed from one kind to another in an isolated system, but it cannot 

be created or destroyed: the total energy of the system remains constant. 

Explanation 

Consider a block-spring system. The block is placed on a table and a frictional force is 

present between the block and the table. There are two transfer of energy through the 

system boundary: the positive conservative work SW  done on the block by the spring and 

the negative work fW  done on the block by the frictional force exerted by the table. For 

this system, the conservation of energy is written as 


