
Physics (HRK)   Chapter 6: Particle Dynamics 

1 
Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera 

 

PARTICLE DYNAMICS 

 

Force Laws 

There are four fundamental forces in nature. 

Gravitational force 

This force originates due to the presence of matter. 

Electromagnetic force 

This force includes basic electric and magnetic interactions and is responsible for 

the binding of atoms and the structure of solids. 

Weak Nuclear Force 

This force causes certain radioactive decay processes and certain reactions among 

the fundamental particles. 

Strong Force 

 This force operates among the fundamental particles (protons and neutrons) and is 

responsible for biding the nucleus together. 

Example: 

For the case of two protons, the forces have the following relative strengths: 

Strong Force:   Relative Strength = 1 

Electromagnetic Force: Relative Strength = -210  

Weak Nuclear Force:  Relative Strength = -710  

Gravitational Force:  Relative Strength = -3810  

It is clear that the gravitational force is very weak and has negligible effects.  

Electroweak Force 

In 1967, a theory was proposed according to which weak and electromagnetic 

forces could be regarded as parts of a single force called electroweak force. 

Grand Unification Theories 

There are new theories proposed for the combination of strong and electroweak 

forces into a single force into a single framework. 

Theories of Everything 

The theories, which are proposed of the unification of all the four fundamental 

forces, are called theories of everything.  

There are some other forces for which the electromagnetic force is the origin. For 

example contact forces such as normal force, frictional force, viscous force, tensile force, 

elastic force and many others. Microscopically, all these forces originate with the force 

between the atoms. 

Frictional Forces  

When one force moves against the other, then force is produced between the 

surfaces. This force opposes the motion of the bodies. For example if a block of mass m 

is projected with initial velocity 0v along a horizontal table, then it will finally comes to 

rest. This is due to the fact that there is force of friction between the block and the surface 
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of table which produces a negative acceleration a. this reduced the velocity of the block 

to zero.  

When one body slides on the surface of the other, then each body exerts a force of 

friction of the other surface. So, the frictional force opposes the relative motion. Even 

when there is no relative motion, frictional forces may exist between the surfaces.  

In an automobile, about 20% of the engine power is used to counteract the 

frictional forces. Friction also causes wear and seizing of moving parts, therefore a lot of 

effort is made to reduce the friction. But on the other hand, friction is very important in 

our daily life, because it brings every rotating shaft to a halt. Without friction, we cannot 

walk, we cannot hold a pencil and could not write. Also, wheeled transportation is only 

possible due to friction. 

Force of Static Friction 

The frictional forces acting between the surfaces at rest with respect to each other 

are called forces of static friction. 

Consider a block of mass m placed on a horizontal surface. The weight of block is 

mg, which is balanced by the normal force N (reaction of the horizontal surface) as 

shown in the figure.  

Suppose a force F is applied on the resting block 

which is balanced by the equal and opposite force of 

static friction Sf . As F increases, the force of static 

friction also increases. Until Sf  reaches a certain 

maximum value just before sliding the block. This force 

of static friction depends upon 

The normal force N 

The nature of the surfaces in contact 

NSSf  

Or  NSmaxS )(f  

Here maxS)(f  is the maximum value of the force of static friction, just before the sliding or 

moving of the block. S  is called the coefficient of static friction. It depends upon the 

nature of the surfaces in contact. 

Force of Kinetic Friction  

 When the value of applied force F is 

greater than the maximum force of static friction 

maxS)(f , then the block starts moving and has 

accelerated motion, i.e., 

 maxS )(f  F  Let the value of the 

applied force F is so adjusted that the block 

moves with uniform velocity v. in this case a 
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force of friction is also present which is 

called force of kinetic friction Kf . This 

force also depends upon: 

 The normal force 

 The nature of the surfaces sliding 

against each other 

When the block is moving with uniform 

velocity,  

Nf KK   

Where K  is called the coefficient of 

kinetic friction. 

It should be noted that  

KfmaxS )(f  

Also,  

Kf    

 

 

The Microscopic Basis of Friction 

On the atomic scale, even the most finely polished surface is far from plane. For example, 

a highly polished steel surface has irregularities. The surface  irregularities is several 

thousands atomic diameters. 

 When the bodies are placed incontact, then the actual microscopic area of 

contact is much less than the true area of the surface. In a particular case, these areas can 

easiliy be in the ratio 1:10000 . the actual microscopic area of contact is proportional to 

the mormal force, because the contact points deform plastically under the great stresses 
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that develop at these points. Therefore, many contact points actually becomes cold 

welded together. 

 This phenomenon of “surface adhesion” occurs because at the contact points, 

the molecules on the opposite side of the surfaces are so 

close together that they exert strong intermolecular forces 

on each other. 

The coefficient of friction depends upon many variables 

such as: 

 The nature of surface of materials 

 Surface finish 

 Surface films 

 Temperature 

In the absence of air, oxide films may form on the opposite surface, which reduce the 

friction. 

The Dynamics of Uniform Circular Motion 

 Consider of body of mass m, which is moving with uniform speed v along a 

circular path of radius r. as the direction of the body changes continuously, therefore, it 

has variable velocity and it has some acceleration a, which is directed radially inward i.e., 

towards the center of the circle. This is called centripetal acceleration and is given by: 

r

v
a

2

  

Hence a is a variable vector because even though its magnitude remains constant, its 

direction changes continuously. 

The net force acting upon the body is called centripetal force, which is given by the 

Newton’s second law of motion: 

  amF  

r

v
mmaF

2

  

The body moving in the circle is not in equilibrium state, because the net force acting the 

body is not zero. 

Centripetal Force 

 The force which is responsible for uniform circular motion and is always 

directed towards the center of the circle is called centripetal force. 

 Consider a disc of mass m on the end of a string and is moving with constant 

speed v along circular path of radius R. In this case, the centripetal force applied on the 

disc is the tension T in the string.   

As the moon is revolving around the earth, therefore, the centripetal force is the 

gravitational pull of the earth. Similarly, for the case of the electrons revolving around the 

nucleus, the centripetal force is provided by the force of attraction. 

The Conical Pendulum  
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 Figure shows a small body of mass m revolving in a horizontal circle of radius 

R with constant speed v at the end of a string of length L. as the body swings around, the 

string sweeps over the surface of an imaginary cone. This device is called conical 

pendulum. 

 The string describes a right circular 

cone of semi-angle θ. Let T is the tension in 

the string and the weight mg of the conical 

pendulum is acting vertically downward. The 

string makes and angle θ with vertical. 

According to Newton’s second law of motion, 

the net force acting on the conical pendulum 

is:  

  amgmTF  

The tension in the string can be resolved into 

two rectangular components: 

i. The redial component rT  directed towards the center of the circle 

sinTTr   

ii. The vertical component zT directed upwards 

cosTTz   

As there is no vertical acceleration, therefore, vertical forces are balanced: 

   0cos gmTFz   

 gmT cos     ----------   (1) 

 

The centripetal force acting on the conical pendulum is equal to the radial component of 

tension: 

    ----------   (2) 

      But sinTTr   

      And 
R

v
ar

2

  

The equation (2) will become: 

 
R

v
mT

2

sin    

 
R

v
mT

2

sin       ----------   (3) 

Dividing equation (1) and (3), we get: 

 
mg

Rmv

T

T /

cos

sin 2





 

 
Rg

v 2

tan   

  rrr maTF
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 tan2 Rgv   

 tanRgv   

This gives the constant speed of the conical pendulum. 

Period of Motion 

If t is the time for one revolution, then 










sin

cos
2

tan

22

g

R

Rg

R

v

R
t   

But sinLR   

sin .cos
2

sin

L
t

g

 



  

cos
2

L
t

g


  

The Rotor 

 The rotor is a hollow cylindrical room. A  person enters the rotor, closes the 

door and stands against the wall. The rotor starts rotating about vertical axis. When it got 

sufficient speed (pre-determined) then the floor below the person is opened downward, 

revealing a deep pit. The person does not fall but remains pinned up against the wall of 

the rotor. 

 Here N is the normal force exerted by the wall on the person, which is also 

equal to the centripetal force acting on the person in the rotor. 

 If the person does not fall then there must be no acceleration along vertical 

direction. The weight must be balanced by the force of static friction: 

0za   

0z s zF f mg ma     

0sf mg    

sf mg     ----------   (1) 

Let R is the radius of the rotor and v is the speed with which the person isrotating alosn 

the circular path, then the centripetal or radial acceleration is: 

2

r

v
a

R
   

Now along the radial direction, the sum of component of forces is: 

rF N   

rma N    

2v
m N

R

 
    

 
 

2v
m N

R
    
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2mv
N

R
      ----------   (2) 

The force of static friction is: 

s sf N  

 

here s  is the coefficient of static friction. Putting values in equation (1), we get: 

2

smv
mg

R


     

s

Rg
v


  

This is the expression f velocity of the rotor, beyond which the person in the rotor does 

not fall and remains pinned against the wall of the rotor. 

 

Equations of Motion under Constant Force 

 A constant force produces constant acceleration and the acceleration is 

described as the derivative of velocity. If a and v is the acceleration and velocity of the 

moving object, then acceleration of the object is described as: 

 
dv

a
dt

  

 Or dv adt  

Integrating the above equation between the limits: 

At 0t  , velocity = 0v  

At t t , velocity = v  

 

0 0

v t

v

dv a dt   

As the acceleration is constant: 

 
0 0

v t

v
v a t  

 0v v at   

 0v v at   

The time derivative of position vector x  is equal to the velocity v , i.e., 

 
dx

v
dt

  

 Or dx vdt  

Putting the value of v from equation (1), we have: 

 0( )dx v at dt   

Integrating the above equation between the limits: 

At 0t  , Position w r t origin = 0x  

2

s s

mv
f

R

 

  
 
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At t t , velocity = v  

 

0

0

0

(( ) )

x t

x

dx v at dt    

 

0

0

0 0

x t t

x

dx v dt at dt     

 
0

2

0 0

0
2

t

x t

x

t
x v t a   

 
2

0 0
2

t
x x v t a    

 
2

0 0
2

t
x x v t a    

 

Example of Non-Constant Forces 

 There are some forces which are not constant but these forces change with 

respect to time, velocity or position. 

Forces Depending on Time 

 To stop a moving car, brakes are applied slowly at first and then more strongly 

as the car slows. In this case, the braking force depends on the time during the interval 

when the car is slowing. Another example of time dependent force is that force which is 

applied by the sound waves on the air molecules during their propagation. As the sound 

waves vary sinusoidally with respect to time, therefore, the forces also change 

sinusoidally with respect to time.  

Force Depending on Velocity 

 When a body is moving through a fluid medium, such as air or water, then the 

frictional force or drag force acting upon the body increases with increase in velocity of 

the body. 

 In case of free fall, the drag force increases up to the limit that it balances the 

weight of the body and then the body falls with constant velocity, known as terminal 

velocity. To approach the limit of terminal velocity, the free fall must be of the order of 

100 m or so. Similarly the projectile motion is also affected severely by the drag force 

due to which the range can be reduced on half or less. 

 If we walk slowly in a swimming pool, we feel only a small resistive force. 

But it we try to walk quicky, the resistive force will also increase. 

Forces Depending upon the Position  

The restoring force applied by a spring on a body of mass m is the example of the force 

which depends on position. The resorting force F is directly proportional to the 

displacement x, of the body from mean position: 

F x   

F kx   
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Using Newton’s 2
nd

 law of motion: 

ma kx   

Where m is mass of the object and a is the acceleration with which the object is moving. 

k
a x

m
   

The restoring force will be zero at mean position and it will become maximum at extreme 

position. In a similar way, the acceleration also increases and decreases as the position of 

the vibrating body changes. 

Time Dependent Forces (Analytical Method) 

Let a(t)  is the time dependent acceleration due to a time dependent force. Then in is 

given by the expression: 

( )
dv

a t
dt

  

Or ( )dv a t dt  

Integrating the above equation between the limits: 

 At 0t  , velocity = 0v  

 At t t , velocity = v  

 

0 0

( )

v t

v

dv a t dt   

 
0

0

( )

t
v

v
v a t dt   

 0

0

( )

t

v v a t dt    

 0

0

( )

t

v v a t dt    

Once we have ( )v t , we can calculate ( )x t  

The time derivative of position vector x  is equal to the velocity v , i.e., 

 
( )

( )
dx t

v t
dt

  

 Or ( )dx v t dt  

Integrating the above equation between the limits: 

 At 0t  , Position w r t origin = 0x  

 At t t , velocity = v  

 

0 0

( )

x t

x

dx v t dt   

 
0

0

( )

t
x

x
x v t dt   



Physics (HRK)   Chapter 6: Particle Dynamics 

10 
Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera 

 

 0

0

( )

t

x x v t dt    

 0

0

( )

t

x x v t dt    

Drag Forces and the Motion of Projectile 

Raindrops fall from the clouds whose height h above the ground is about 2 km. the 

expected velocity of the raindrop on striking the ground is 12 200v gh ms  . But the 

actual velocity of the raindrop is much smaller. This is due to the drag force i.e., frictional 

force of air on the raindrop. 

 The drag force acting on an object depends upon its velocity. Greater the 

velocity, greater is the drag force. The velocity of the object can increase to a constant 

value which is known as terminal speed. In this case, the force and acceleration is 

velocity dependent. 

( )
dv

a v
dt

  

( )

dv
dt

a v
  

Integrating the above equation between the limits: 

 At 0t  , velocity = 0v  

 At t t , velocity = v  

00
( )

t v

v

dv
dt

a v
   

0
( )

v

v

dv
t

a v
    

SAMPLE PROBLEM 

Consider an object of mass m falling in air experiences a draf force D, which increases 

linearly with velocity: 

D v  

D bv  

Here b is the constant depending on the properties of the object (its size and shape) and 

also on the properties of the fluid (especially its density). We have to find the velocity as 

a function of time, ( )v t , when the mass is dropped from rest 0 0v  . 

Solution 

The net force acting on the object in the downward direction is  

yF mg bv   

ma mg bv   

b
a g v

m
     ----------   (1) 
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For the case of a velocity dependent force, we can write: 

( )
dv

a v
dt

  

( )

dv
dt

a v
  

Integrating the above equation between the limits: 

 At 0t  , velocity = 0v  

 At t t , velocity = v  

00
( )

t v

v

dv
dt

a v
   

0
( )

v

v

dv
t

a v
      ----------   (2) 

Putting values from equation (1), we have: 

0

v

v

dv
t

b
g v

m

 
 

 
 

  

For the present case, 0 0v  , therefore 

0

v
dv

t
b

g v
m


 

 
 

  

 0

v
dv

t m
mg bv


  

 0

v
m bdv

t
b mg bv




  

 
0

ln
vm

t mg bv
b

   

 ln ln( )
m

t mg bv mg
b
      

ln
m mg bv

t
b mg

 
  

 
 

ln
mg bv bt

mg m

 
  

 
 

bt

mmg bv
e

mg

 
 
 

 
 

 
 

bt

mmg bv mg e

 
 
    

bt

mbv mg mg e

 
 
    

1

bt

mbv mg e

 
 
 

 
  

 
 
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1

bt

mmg
v e

b

 
 
 

 
  

 
 

  ----------   (3) 

Case 1. When t is small: 

 When t is small, then by using formula 
2

1 .....
2!

x x
e x    for 1x   in 

equation (3), we have: 

mg bt
v gt

b m

 
  

 
 

 It means that for short interval of time, the object is falling freely under the 

action of gravity. The effect of drag force will be negligible for this case. 

Case 2. When t is large: 

When t is large, then 

0

bt

me

 
 
    

The equation (3) will become:  

mg
v

b
  

This velocity is known as terminal velocity. 

Exercise Problem 59: An object is dropped from from rest. Find the terminal speed 

assuming that the drag force is given by 
2D bv  

Solution. Assuming Newton’s 2
nd

 law: 

2

netF mg D mg bv     

2dv
m mg bv

dt
   

2dv bv
g

dt m
   

2

dv
dt

bv
g

m


 

 
 

 

2

dv
dt

b mg
v

m b


 

 
 

 

     T

mg
v

b
  

 2 2

T

dv b
dt

mv v



 

Integrating both sides: 

 2 2

T

dv b
dt

mv v



   
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0

0

1
ln

2

v

tT

T T

v v b
t

v v v m





 

01
ln ln

2 0

T T

T T T

v v v b
t

v v v v m

     
     

     
 

 
1

ln ln 1
2

T

T T

v v b
t

v v v m

  
   

  
 

     ln(1) 0  

2
ln 0T T

T

v v v b
t

v v m

  
   

  
 

2 2
ln expT T T T

T T

v v v b v v v b
t t

v v m v v m

    
     

    
 

Applying Componendo-Dividendo Rule: 

2 2 2
exp 1 exp 1 exp 1

2

2 2 22
exp 1 exp 1 exp 1

T T T

T T T T

T T TT T

v b v b v b
t t t

v v v v v vm m m

v b v b v bv v v v v v
t t t

m m m

     
                   

        
       

     

 

2
exp 1

2
exp 1

T

TT

v b
t

v m

v bv
t

m

 
 

  
 

 
 

 

2
exp 1

2
exp 1

T

T

T

v b
t

m
v v

v b
t

m

  
  

  
      

 

2 2
exp 1 exp

2 2
exp 1 exp

T T

T

T T

v b v b
t t

m m
v v

v b v b
t t

m m

     
      

     
     

      
     

 

2
1 exp

2
1 exp

T

T

T

v b
t

m
v v

v b
t

m

   
    

   
   

    
   

 

Terminal Speed: 

For terminal Speed, put t  : 

When t  , 
2

exp 0Tv b
t

m

 
  
 

 

1 0

1 0
T Tv v v

 
   
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Projectile Motion with Air Resistance 

The two dimensional projectile motion is also affected by the drag force due to resistance 

of air. The height as well as the range of projectile is reduced. For example if a base ball 

is projected with initial velocity of 45 ms
-1

 at an angel of 060 with the horizontal, then its 

range is reduced from 179 m to 72 m and the maximum height is reduced from 78 m to 

48 m. also the trajectory is no symmetric about the maximum the descending motion is 

much steeper than ascending motion. The projectile strikes the ground at an angel of -

079 . The drag force depends upon the velocity of projectile. If the wind is blowing, the 

calculation must be changed accordingly and results will differ. 

Projectile Motion 

 When a body is projected at an angel with the horizontal and it moves freely 

under the action of gravity is called a projectile. Projectile motion is an example of two 

dimensional motion in which the objects moves with constant acceleration.  

Suppose a projectile of mass m is projected at an angle 0  with the horizontal with initial 

velocity 0v  and it moves in xy-plane. Let r r is the position vector and v be its velocity at 

any time, then according to second law of motion: 

ˆa = F=- g jm m  

2

2

r v ˆ= =- g j
d d

m m m
dx dx

 

v ˆ= - g j
d

dx
  

Integrating both sides with respect to time, we get: 

v ˆ= - g j
d

dt dt
dx   

 1
ˆv =-g j t A  

Initially, at 00, v vt   , so 1 0vA   

 0
ˆv = v -g j t    ----------   (1) 

As the motion of the object is in two dimensions, so the equation (1) can be written in 

terms of rectangular components as: 

x y 0x 0y
ˆ ˆ ˆ ˆ ˆ(v i +v j)=(v i +v j)-g j t  

Or         x y 0x 0y
ˆ ˆ ˆ ˆv i + v j = v i + v - g jt  

Comparing coefficients of î  and ĵ  on both sides: 

x 0x x 0 0v = v v = v cosOr     

y 0y y 0 0v = v - g v = v sin - gt Or t  

The equation (1) can be written as: 

0

r ˆv = = v -g j
d

t
dt

 

Integrating both sides, we get: 
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 0

r ˆ= v -g j
d

dt t dt
dt   

2

0 2

1 ˆr = v - g j
2

t t A  

Initially, at 0, r 0t   , so 2 0A   

Thus  

2

0

1 ˆr = v - g j
2

t t    ----------   (2) 

As the motion of the object is in two dimensions, so the equation (2) can be written in 

terms of rectangular components as: 

2

0x 0y

1ˆ ˆ ˆ ˆ ˆ(xi + yj)= (v i + v j) - g j
2

t t  

Or        2

0x 0y

1ˆ ˆ ˆ ˆxi + yj = v i + v - g j
2

t t t
 
 
 

 

Comparing coefficients of î  and ĵ  on both sides, we get: 

0x 0 0x = v x = v cost or t  

2 2

0y 0 0

1 1
y = v - g y = v sin - g

2 2
t t or t t  

Trajectory of the Projectile 

As 0 0

0 0

x = v cos
v cos

x
t t


   

Putting this value of t  in  

2

0 0

1
y = v sin - g

2
t t  

2

0 0

0 0 0 0

1
y = v sin - g

v cos 2 v cos

x x


 

   
   
   

 

2

0 2 2

0 0

1
y = tan - g

2 v cos

x
x 


 

We can write above equation as: 

2y = -a x b x      ----------   (3) 

Where 0 2 2

0 0

1 g
tan ,

2 v cos
a and b


   

Equation (3) is the equation of parabola. So the trajectory of projectile is parabola. 

Magnitude of Velocity at any Instant 

The magnitude of velocity can be find out by using formula: 

2 2

x yv v v   

   
2 2

0 0 0 0v cos v sin - gv t    

2 2 2 2 2 2 2

0 0 0 0 0 0v cos v sin + g 2v sinv t gt      
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 2 2 2 2 2 2

0 0 0 0 0v cos sin + g 2v sinv t gt      

2 2 2 2

0 0 0v + g 2v sinv t gt    

Direction of Velocity at any Instant 

 The angle θ which the velocity makes, at instant, with horizontal can be find out 

by using expression: 

0 0

0 0

v sin - g
tan

v cos

y

x

V t

V





   

Time to Reach at Maximum Height (tm) 

As the vertical component of velocity is 

0 0v = v sin - gy t  

At highest point v = 0y , therefore, 

0 00= v sin - gt  

0 0g v sint   

0 0v sin

g
mt


  

Time of Flight (T) 

It is the time taken by the projectile from the point of projection to come back to the level of 

projection. 

2

0 0

1
y = v sin - g

2
t t  

As vertical displacement of the projectile 0y  , so  

2

0 0

1
0 = v sin - g

2
t t  

2

0 0

1
g = v sin

2
t t  

0 02v sin
t =

g


 

Here t is the time of flight, i.e., t =T: 

0 02v sin
T =

g


 

Horizontal Range 

It is the horizontal distance covered by the projectile. As the horizontal component of 

velocity for a projectile remains constant ( 0)xa  , so by using the 2nd equation of motion: 

xR v T   

Where  0 0cosxv v   is the horizontal component of velocity and 0 02v sin
T =

g

 
 
 

is the 

time of flight: 

0 0
0 0

2v sin
cosR v

g


   
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2

0 0 02v sin cos
R

g

 
  

 2

0 0 0v 2sin cos
R

g

 
  

2

0 0v sin 2
R

g


  

Maximum Range 

The range of the projectile will be maximum, when  

0sin 2 1   

 1

02 sin 1    

0

02 90   

0

0 45   

Thus the projectile will have the maximum range when it will be projected at an angle of 

045 . Therefore: 

2

0v
R

g
  

Non-Inertial Frames and Pseudo Forces 

 To apply the classical mechanics in non-inertial frames, we must introduce 

additional forces known as pseudo-forces. Unlike other forces, we can not associate pseudo-

forces with any particular object in the environment of the body on which they act. 

Moreover, if we view the body from an inertial frame, the pseudo forces disappear. Pseudo 

forces are simply devices that permit us to apply classical mechanics in the normal way to 

events if we insist on viewing the events from a non-inertial reference frame. 

Linearly Accelerated References Frames  

 Consider an observer S'  riding in a van that is moving at constant velocity. The 

van contains a long air-track with a frictionless 0.25 glider resting at one end. The driver of 

the van applies the brakes, ant the van begins to decelerate. An observer S on the ground 

measures the constant acceleration of the van to be -2.8 ms-2. The observer S' riding in the 

van is therefore in a non-inertial frame of reference when the van begins to decelerate. The 

observer S'  observes the glider to move down the track with an acceleration of 2.8 ms-2. 

 For ground observer S , who is an inertial frame of reference, the analysis is 

straight forward. The glider, which had been moving forward at constant velocity before the 

van started to brake, simply continues to do so. According to S , the glider has no acceleration 

and therefore no horizontal force need be acting on it.  

 ObserverS' , however, sees the glider accelerate and can find no object in the 

environment of the glider that exerted a force on it to to provide its observed forward 

acceleration. To preserve the applicability of Newton’s second law, S'  must assume that a 

pseudo force acts on glider. According to S' , this force 'F  must equal 'ma , where '( )a a   

is the acceleration of the glider measured by observer S' . The magnitude of this pseudo force 

is: 
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2' ' (0.25 )(2.8 ) 0.70F ma kg ms N    

And its direction is the same as 'a , that is towards the front of van. 

 This force which is very real from the point of view of  'S , is no apparent to the 

ground observer S .  

Driving a Car on Circular Path  

Pseudo forces are very real to those that experience them. Imagine yourself riding in a car 

that is rounding a curve to the left. To a ground observer, the car is experiencing a centripetal 

acceleration and therefore constitutes a non-inertial reference frame. To the ground observer, 

who is in inertial frame of reference, this is quite natural: your body is simply trying to obey 

the Newton’s first law and moves in a straight line. From your point of view in non-inertial 

frame of reference of car, you must ascribe your sliding motion to a pseudo-force pulling you 

to the right. This type of pseudo force is called centrifugal force meaning a force directed 

away from center. 

  

Centrifuge Machine 

Pseudo forces can be used as the basis of practical devices. Consider the centrifuge, one of 

the most useful of laboratory instruments. As a mixture of substances moves rapidly in a 

circle, the more massive substances experience a larger centrifugal force 
2mv

r
 and move 

further away from the axis of rotation. The centrifuge, thus uses a pseudo-force to separate 

substance by mass, just as mass spectrometer uses electromagnetic force to separate atoms by 

mass. 

Limitations of Newton’s Laws 

In 20th century, the physical world has experienced three revolutionary developments: 

 Einstein’s Special Theory of Relativity (1905) 

 Einstein’s General Theory of Relativity (1915) 

 Quantum Mechanics (1925) 

 Special theory of relativity teaches that we can’t extrapolate the use of Newton’s 

laws to particles moving at speed comparable to the speed of light. General theory of 

relativity shows that we can’t use Newton’s laws in the vicinity of very large gravitational 

force. Quantum mechanics teaches us that we can’t extrapolate the Newton’s laws to the 

objects as small as atom. 

 Special theory, which involves a distinctly non-Newtonian view of space and 

time, can be applied under all circumstances, at high speed and low speeds. In the limit of 

low speed, it can be shown that the dynamics of special reduces directly to the Newton’s 

laws.  

 Similarly, general theory can be applied to weak as well as strong gravitational 

fields, but its equation reduces to Newton’s laws for weak forces.  

 Quantum mechanics can be applied to the individual atoms, where certain 

randomness in behavior is predicted. To ordinary objects containing huge number of atoms, 

the randomness averages out to give Newton’s laws once again. 


